-
Due to its high thermal conductivity and uranium density, uranium nitride (UN) has great application prospects in various nuclear facilities. However, sintering is an important step during the preparation of UN fuel, and the properties of UN pellets in reactor are significantly affected by sintering parameters. Therefore, using numerical simulation techniques to investigate the sintering mechanism of UN fuel is of great significance. In this work, a phase-field model for the sintering of UN based on the grand potential is established, which simultaneously incorporates the rigid body motion of particles and the mass diffusion. This model enables the expansion of the interface width, thereby increasing the spatial scale of the simulation system. Firstly, a validation analysis of the constructed model is conducted. The phase-field variables exhibit a symmetric distribution at the locally equilibrated interface. The rigid body motion of particles significantly promotes the densification process. Subsequently, the sintering process of two particles is simulated at different temperatures. The results show that the growth of the sintering neck follows a power function relationship with the power exponent n of 7.14, indicating that the dominant mass transfer mechanism is surface diffusion. As the sintering temperature increases, the sintering neck growth accelerates, and the maximum concentration of vacancies within the grain boundary increases. Finally, the multi-particle sintering is investigated at different temperatures. The contact and overlap between sintering necks form a complex grain boundary structure, and the internal pores transform from irregular to circular shapes. During the densification, vacancies originating from pores segregate to grain boundaries and then diffuse to the external gas phase or larger pores. The average pore size initially increases slowly and then remains stable. As the sintering temperature increases from 1723 K to 1873 K, the degree of densification progressively improves.
-
Keywords:
- Phase-field simulation /
- Uranium nitride /
- Sintering /
- Grand potential /
- Diffusion
-
[1] Watkins J K, Gonzales A, Wagner A R, Sooby E S, Jaques B J 2021 J. Nucl. Mater. 553 153048
[2] Chen S L, He X J, Yuan C X 2020 Nucl. Sci. Tech. 31 32
[3] Zakova J, Wallenius J 2012 Ann. Nucl. Energy 47 182
[4] Yang K, Kardoulaki E, Zhao D, Broussard A, Metzger K, White J T, Sivack M R, McClellan K J, Lahoda E J, Lian J 2021 J. Nucl. Mater. 557 153272
[5] Tennery V J, Godfrey T G, Potter R A 1971 J. Am. Ceram. Soc. 54 327
[6] Johnson K D, Lopes D A 2018 J. Nucl. Mater. 503 75
[7] Yi M, Wang W X, Xue M, Gong Q H, Xu B X 2023 Arch. Comput. Methods Eng. 30 3325
[8] Zhang Z Q, Fu G C, Wan B, Su Y T, Jiang M G 2021 Microelectron. Reliab. 126 114203
[9] Pimienta P J P, Garboczi E J, Craig Carter W 1992 Comput. Mater. Sci 1 63
[10] Raether F, Seifert G 2018 Adv. Theor. Simul. 1 1800022
[11] Liao Y X, Shen W L, Wu X Z, La Y X, Liu W B 2024 Acta Phys. Sin. 73 7 (in Chinese) [廖宇轩,申文龙,吴学志,喇永孝,柳文波 2024 73 7]
[12] Chen L Q 2002 Annu. Rev. Mater. Res. 32 113
[13] Wang Y U 2006 Acta Mater. 54 953
[14] Deng J 2012 Mater. Trans. 53 385
[15] Ahmed K, Yablinsky C A, Schulte A, Allen T, El-Azab A 2013 Modell. Simul. Mater. Sci. Eng. 21 065005
[16] Choudhury A, Nestler B 2012 Phys. Rev. E 85 021602
[17] Plapp M 2011 Phys. Rev. E 84 031601
[18] Aagesen L K, Gao Y, Schwen D, Ahmed K 2018 Phys. Rev. E 98 023309
[19] Hötzer J, Seiz M, Kellner M, Rheinheimer W, Nestler B 2019 Acta Mater. 164 184
[20] Greenquist I, Tonks M R, Aagesen L K, Zhang Y 2020 Comput. Mater. Sci 172 109288
[21] Greenquist I, Tonks M, Cooper M, Andersson D, Zhang Y 2020 J. Nucl. Mater. 532 152052
[22] Cahn J W, Allen S M 1977 J. de Physique 38 51
[23] Shen W L, Liao Y X, Wu X Z, Jiang Y B, Liu W B Acta Metall. Sin. DOI: 10.11900/0412.1961.2024.00138 (in Chinese) [申文龙,廖宇轩,吴学志,姜彦博,柳文波 金属学报 DOI: 10.11900/0412.1961.2024.00138]
[24] Shi R, Wood M, Heo T W, Wood B C, Ye J 2021 J. Eur. Ceram. Soc. 41 211
[25] Muromura T, Tagawa H 1979 J. Nucl. Mater. 79 264
[26] Yang L, Kaltsoyannis N 2022 J. Nucl. Mater. 566 153803
[27] Qi X Y, Liu W B, He Z B, Wang Y F, Yun D 2023 Acta Metall. Sin. 59 1513 (in Chinese) [戚晓勇,柳文波,何宗倍,王一帆,恽迪 2023 金属学报 59 1513]
[28] Matzke H 1990 J. Chem. Soc., Faraday Trans. 86 1243
[29] Moelans N, Blanpain B, Wollants P 2008 Phys. Rev. B 78 024113
[30] Sun Q M, Shen W L, Liao Y X, Li Y, Wang J J, Liu W B 2025 Rare Metal. Mat. Eng. 54 671 (in Chinese) [孙启明,申文龙,廖宇轩,李昱,王纪钧,柳文波 2025 稀有金属材料与工程 54 671]
[31] German R M (translated by Jia C C, Chu K, Liu B W)2021 Sintering: From Empirical Observations to Scientific Principles (Beijing: Chemical Industry Press) pp165 (in Chinese)[杰曼RM著 (贾成厂,褚克,刘博文等译) 2021 烧结实践与科学原理(北京:化学工业出版社)第165页]
[32] Kuczynski G C 1949 Trans. Am. Inst. Min. Metall. Eng. 185 169
[33] Jiang Y B, Liu W B, Sun Z P, La Y X, Yun D 2022 Acta Phys. Sin. 71 233 (in Chinese) [姜彦博,柳文波,孙志鹏,喇永孝,恽迪 2022 71 233]
[34] Watanabe R, Masuda Y 1972 Trans. Jpn. Inst. Met. 13 134
Metrics
- Abstract views: 22
- PDF Downloads: 1
- Cited By: 0









下载: