Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research Progress on Plasmonic-Enhanced Polarization Performance of van der Waals Photodetectors

JIAN Jialing QIAN Keyu Wang Zijian SU Yuchen WENG Zhengjin XIAO Shaoqing Nan Haiyan

Citation:

Research Progress on Plasmonic-Enhanced Polarization Performance of van der Waals Photodetectors

JIAN Jialing, QIAN Keyu, Wang Zijian, SU Yuchen, WENG Zhengjin, XIAO Shaoqing, Nan Haiyan
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Polarization detection is a fundamental route to access the vectorial nature of light, underpinning advanced technologies in optical communication, intelligent sensing, and biosensing..Two-dimensional van der Waals materials, owing to their intrinsic anisotropy and tunable electronic properties, have emerged as a promising platform for high-performance polarization-sensitive photodetectors. Nevertheless, their intrinsically weak light absorption and limited photoresponse efficiency remain major bottlenecks. Plasmonic nanostructures, which enable strong localized field confinement and manipulation at the nanoscale, provide an effective strategy to overcome these limitations and substantially boost device performance. In this review, we systematically summarize the coupling mechanisms between plasmonic architectures and vdW materials, highlighting near-field enhancement, plasmon-induced hot-carrier generation, and mode-selective polarization coupling as key physical processes that enhance photocarrier generation and polarization extinction. Representative device implementations, including metallic gratings, hybrid nanoantennas, and chiral metasurfaces, are compared in terms of responsivity, detection speed, operating bandwidth, and polarization extinction ratio, revealing consistent improvements of one to two orders of magnitude over bare vdW devices. We further survey emerging applications in high-speed polarization-encoded optical communication, on-chip optical computing and information processing, and bioinspired vision and image recognition systems, where plasmonic-vdW hybrid detectors demonstrate unique advantages in miniaturization and energy efficiency. Finally, we discuss current challenges such as large-scale fabrication of uniform plasmonic arrays, spectral bandwidth broadening, and seamless integration with complementary photonic circuits, and outline future opportunities for next-generation polarization-resolved optoelectronic platforms.
  • [1]

    Sun Y L, Zhang X G, Cui T J, Jiang W X 2025 Adv. Funct. Mater. 35 2421870

    [2]

    Su C, Li M, Yan H, Zhang Y, Li H, Fan W, Bai W, Liu X, Wang Q, Yin S 2025 ACS Appl. Mater. Interfaces 17 5213

    [3]

    Wang F, Fang S, Zhang Y, Wang Q J 2025 Nat. Commun. 16 6791

    [4]

    Wei Z M, Xia J B 2019 Acta Phys. Sin. 68 163201

    [5]

    Li X, Liu K, Wu D, Lin P, Shi Z, Li X, Zeng L, Chai Y, Lau S P, Tsang Y H Adv. Mater. 24 15717

    [6]

    Wu J, Wei M, Mu J, Ma H, Zhong C, Ye Y, Sun C, Tang B, Wang L, Li J, Xu X, Liu B, Li L, Lin H 2021 ACS Nano 15 15982

    [7]

    Wu J, Ye Y, Jian J, Yao X, Li J, Tang B, Ma H, Wei M, Li W, Lin H, Li L 2023 Nano Lett. 23 6440

    [8]

    Chang H, Hur W, Kang H, Jun B H 2025 Light-Sci. Appl. 14 79

    [9]

    Jian J, Liu R, Ye Y, Wu J, Deng Q, Wei M, Tang Y, Tang R, Sun B, Ma H, Shi Y, Zhong C, Sun C, Lin H, Li M, Li L 2024 Adv. Opt. Mater. 12 2400281

    [10]

    Im H, Bantz K C, Lee S H, Johnson T W, Haynes C L, Oh S H 2013 Adv. Mater. 25 2678

    [11]

    Wei H, Xu H 2014 Mater. Today 17 372

    [12]

    Lee J J, Han S J, Choi C, Seo C, Hwang S, Kim J, Hong J P, Jang J, Kyhm J, Kim J W, Yu B S, Lim J A, Wang G, Kang J, Kim Y, Ahn S K, Ahn J, Hwang D K 2025 Nat. Commun. 16 4624

    [13]

    Kwon S, Lee S Y, Choi S H, Kang J W, Lee T, Song J, Lee S W, Cho C H, Kim K K, Yee K J, Kim D W 2020 ACS Appl. Mater. Interfaces 12 44088

    [14]

    Alamri M, Liu B, Sadeghi S M, Ewing D, Wilson A, Doolin J L, Berrie C L, Wu J 2020 ACS Appl. Nano Mater. 3 7858

    [15]

    Jian J, Wu J, Zhong C, Ma H, Sun B, Ye Y, Luo Y, Wei M, Lei K, Liu R, Chen Z, Li G, Dai H, Tang R, Sun C, Li J, Li W, Li M, Lin H, Li L 2023 ACS Photonics 10 3494

    [16]

    Bai Q, Huang X, Guo Y, Du S, Sun C, Hu L, Zheng R, Yang Y, Jin A, Li J, Gu C 2023 Nano Res. 16 10272

    [17]

    Zhong C, Liao K, Dai T, Wei M, Ma H, Wu J, Zhang Z, Ye Y, Luo Y, Chen Z, Jian J, Sun C, Tang B, Zhang P, Liu R, Li J, Yang J, Li L, Liu K, Hu X, Lin H 2023 Nat. Commun. 14 6939

    [18]

    Drude P 1900 Ann. Phys.-Berlin 306 566

    [19]

    Huang J A, Luo L B 2018 Adv. Opt. Mater. 6 1701282

    [20]

    Tong J, Suo F, Ma J, Tobing L Y M, Qian L, Zhang D H 2019 Opto-Electron. Adv. 2 180026

    [21]

    Zayats A V, Smolyaninov I I, Maradudin A A 2005 Phys. Rep. 408 131

    [22]

    Grundmann M (Grundmann M ed) 2021 The Physics of Semiconductors:An Introduction Including Nanophysics and Applications (Cham:Springer International Publishing) pp339-350

    [23]

    Maier S A (Maier S A ed) 2007 Plasmonics:Fundamentals and Applications (New York, NY:Springer US) pp65-88

    [24]

    He W D, Su D, Wang S J, Zhou H L, Chen W, Zhang X Y, Zhao N, Zhang T 2021 Infrared and Laser Eng. 50 120(in Chinese)[何伟迪, 苏丹, 王善江, 周桓立, 陈雯, 张晓阳, 赵宁, 张彤 2021 红外与激光工程 50 120]

    [25]

    Wang J, Jiao H X, Chen Y, Wu S Q, Wang X D, Zhang S K, Chu H J, Wang JL 2024 Acta Photonica Sin. 53 3(in Chinese)[王菁, 焦韩雪, 陈艳, 伍帅琴, 王旭东, 张书魁, 褚君浩, 王建禄 2024 光子学报 53 3]

    [26]

    Seied Ali Safiabadi T, Zhou W 2019 Nanophotonics 8 1199

    [27]

    Kasani S, Curtin K, Wu N 2019 Nanophotonics 8 2065

    [28]

    Hutter E, Fendler J H 2004 Adv. Mater. 16 1685

    [29]

    Zhang X, Nie C, Jiang X, Zhu L, Wei X 2025 Adv. Opt. Mater. 13 2402794

    [30]

    Su J, Hou X, Dai N, Li Y 2024 Front. Phys. 19 63501

    [31]

    Amendola V, Pilot R, Frasconi M, Marago O M, Iati M A 2017 J. Phys.-Condes. Matter 29 203002

    [32]

    Rycenga M, Cobley C M, Zeng J, Li W, Moran C H, Zhang Q, Qin D, Xia Y 2011 Chem. Rev. 111 3669

    [33]

    Mie G 1908 Ann. Phys.-Berlin 330 377

    [34]

    Dorodnyy A, Smajic J, Leuthold J 2023 Laser Photon. Rev. 17 1

    [35]

    Ge L, Han D, Zi J 2015 Opt. Commun. 354 225

    [36]

    Kinsey N, Ferrera M, Shalaev V M, Boltasseva A 2015 J. Opt. Soc. Am. B 32 121

    [37]

    Oulton R F, Sorger V J, Genov D A, Pile D F P, Zhang X 2008 Nat. Photonics 2 496

    [38]

    Dai D, He S 2009 Opt. Express 17 16646

    [39]

    Zhu B Q, Tsang H K 2016 J. Lightwave Technol. 34 2467

    [40]

    Dai D, He S 2010 Opt. Express 18 17958

    [41]

    Echtermeyer T J, Milana S, Sassi U, Eiden A, Wu M, Lidorikis E, Ferrari A C 2016 Nano Lett. 16 8

    [42]

    Ma P, Salamin Y, Baeuerle B, Josten A, Heni W, Emboras A, Leuthold J 2019 ACS Photonics 6 154

    [43]

    Ma Z, Kikunaga K, Wang H, Sun S, Amin R, Maiti R, Tahersima M H, Dalir H, Miscuglio M, Sorger V J 2020 ACS Photonics 7 932

    [44]

    Ding Y, Cheng Z, Zhu X, Yvind K, Dong J, Galili M, Hu H, Mortensen N A, Xiao S, Oxenløwe L K 2020 Nanophotonics 9 317

    [45]

    Craciun A-M, Stoia D, Azziz A, Astilean S, Focsan M, Lamy de la Chapelle M 2025 RSC Adv. 15 20848

    [46]

    Alsawafta M 2025 Plasmonics 1 1

    [47]

    Abb M, Wang Y, Papasimakis N, de Groot C H, Muskens O L 2014 Nano Lett. 14 346

    [48]

    Nelayah J, Kociak M, Stéphan O, García de Abajo F J, Tencé M, Henrard L, Taverna D, Pastoriza-Santos I, Liz-Marzán L M, Colliex C 2007 Nat. Phys. 3 348

    [49]

    Li Y, DiStefano J G, Murthy A A, Cain J D, Hanson E D, Li Q, Castro F C, Chen X, Dravid V P 2017 ACS Nano 11 10321

    [50]

    Alamri M, Gong M, Cook B, Goul R, Wu J Z 2019 ACS Appl. Mater. Interfaces 11 33390

    [51]

    Khurgin J, Bykov A Y, Zayats A V 2024 eLight 4 15

    [52]

    Wang W, Besteiro L V, Yu P, Lin F, Govorov A O, Xu H, Wang Z 2021 Nanophotonics 10 1911

    [53]

    Lei D, Su D, Maier S A 2024 Light-Sci. Appl. 13 243

    [54]

    Xu X, Dutta A, Khurgin J, Wei A, Shalaev V M, Boltasseva A 2020 Laser Photon. Rev. 14 1900376

    [55]

    Yang W, Liu Y, Cullen D A, McBride J R, Lian T 2021 Nano Lett. 21 4036

    [56]

    Liu Z, Liu M, Qi L, Zhang N, Wang B, Sun X, Zhang R, Li D, Li S 2025 Light-Sci. Appl. 14 68

    [57]

    Yuan F Y, Ye Z, Fan Z, Lin B, Hui L, Jun P L, Zhen H N 2022 Chin. Phys. Lett. 39 058501

    [58]

    Chen S, Cao R, Chen X, Wu Q, Zeng Y, Gao S, Guo Z, Zhao J, Zhang M, Zhang H 2020 Adv. Mater. Interfaces 7 1902179

    [59]

    Yan J, Yang X, Liu X, Du C, Qin F, Yang M, Zheng Z, Li J 2023 Adv. Sci. (Weinh) 10 2207022

    [60]

    Randerson S A, Zotev P G, Hu X, Knight A J, Wang Y, Nagarkar S, Hensman D, Wang Y, Tartakovskii A I 2024 ACS Nano 18 16208

    [61]

    Fan C, Sun X, Shi Z, Lü B, Chen Y, Li S, Liu J M 2023 Adv. Opt. Mater. 11 2202860

    [62]

    Rizvi M H, Wang R, Schubert J, Crumpler W D, Rossner C, Oldenburg A L, Fery A, Tracy J B 2022 Adv. Mater. 34 2203366

    [63]

    Hao Y, Hang T, Chen C, Zhang C, Chen Y, Yu C, Wu S, Yang J, Yang Z, Li X, Cao G 2024 Adv. Funct. Mater. 35 2416475

    [64]

    Lu Z, Ji J, Ye H, Zhang H, Zhang S, Xu H 2024 Nat. Commun. 15 8803

    [65]

    Venuthurumilli P K, Ye P D, Xu X 2018 ACS Nano 12 4861

    [66]

    Li H, Zhao J, Wang Y, Liu H, Chen Q, Bao Y, Zhou M, Li Y, Sang Y, Yang F, Nie Z 2025 ACS Nano 19 7391

    [67]

    Chen J B, Tang D X, Xie Y, Gu C J, Liu Z J, Lu P F, Shen X 2024 Laser Technol. 48 867(in Chinese)[程佳宝, 唐大秀, 谢颖, 顾辰杰, 刘自军, 芦鹏飞, 沈祥 2024 激光技术 48 867]

    [68]

    Chu Y T, Chen P L, Huang S H, Yadav S N S, Syong W R, Mao C H, Lu Y J, Liu C H, Wu P C, Yen T J 2025 ACS Nano 19 18545

    [69]

    Wen T, Zhang W, Liu S, Hu A, Zhao J, Ye Y, Chen Y, Qiu C W, Gong Q, Lu G 2020 Sci. Adv. 6 eaao0019

    [70]

    Ray S K, Chandel S, Singh A K, Kumar A, Mandal A, Misra S, Mitra P, Ghosh N 2017 ACS Nano 11 1641

    [71]

    Zhao B, Zhang Z M 2015 ACS Photonics 2 1611

    [72]

    Wang C, He C, Liu L, Tang Z, Wang Y, Wang H, Liu W, Wang X, Wang X, Pan A 2025 Nano Lett. 25 5794

    [73]

    Li R, Zhang X, Zhong F, Yu Y, Yan P, Lei D, Lu J, Ni Z 2025 Adv. Opt. Mater. 13 2402668

    [74]

    Huang T, Tu X, Shen C, Zheng B, Wang J, Wang H, Khaliji K, Park S H, Liu Z, Yang T, Zhang Z, Shao L, Li X, Low T, Shi Y, Wang X 2022 Nature 605 63

    [75]

    Zhu Y, Zou K L, Qi D X, He J, Peng R, Wang M 2025 Nano Lett. 25 8680

    [76]

    He C, Tang Z, Wang C, Wang Y, Hua Q, Liu L, Wang X, Schmidt O G, Maier S A, Ren H, Wang X, Pan A 2025 Adv. Mater. 37 2418405

    [77]

    Wei J, Xu C, Dong B, Qiu C-W, Lee C 2021 Nat. Photonics 15 614

    [78]

    Yang L, Yuan Y, Fu B, Yang J, Dai D, Shi S, Yan S, Zhu R, Han X, Li H, Zuo Z, Wang C, Huang Y, Jin K, Gong Q, Xu X 2023 Nat. Commun. 14 4265

    [79]

    Gan W, Liu Y, Liu X, Xiao R, Ni K, Jiang M, Han H, Zhou X, Li S, Wu C, Li Y, Li H 2024 ACS Appl. Mater. Interfaces 16 24943

    [80]

    Guo J, Lin L, Li S, Chen J, Wang S, Wu W, Cai J, Liu Y, Ye J, Huang W 2022 ACS Appl. Nano Mater. 5 587

    [81]

    Wu P Y, Lee W Q, Liu C H, Huang C B 2024 Nat. Commun. 15 1855

    [82]

    Hao Y, Hang T, Chen C, Zhang C, Chen Y, Yu C, Wu S, Yang J, Yang Z, Li X, Cao G 2025 Adv. Funct. Mater. 35 2416475

    [83]

    Guo T, Li S, Zhou Y N, Lu W D, Yan Y, Wu Y A 2024 Nat. Commun. 15 6731

    [84]

    Chen Y, Zheng X, Zhang X, Pan W, Wang Z, Li S, Dong S, Liu F, He Q, Zhou L, Sun S 2023 Nano Lett. 23 3326

    [85]

    Liu Y, Wang J, Zhu B, Wang X, Zhang S, Liu W, Shi L, Tao Z 2025 Nano Lett. 25 2864

    [86]

    Wang S M, Cheng Q Q, Gong Y X, Xu P, Sun C, Li L, Li T, Zhu S N 2016 Nat. Commun. 7 11490

    [87]

    Pelgrin V, Yoon H H, Cassan E, Sun Z 2023 Light-Adv. Manuf. 4 168

    [88]

    Hou S, Han L, Zhang S, Zhang L, Zhang K, Xiao K, Yang Y, Zhang Y, Wen Y, Mo W, Tan Y, Yao Y, He J, Tang W, Guo X, Zhu Y, Chen X 2025 Adv. Sci. (Weinh) 12 2415518

    [89]

    Brown E, Brunker J, Bohndiek S E 2019 Dis. Model. Mech. 12 039636

    [90]

    Jia Q L, Zhang Z D 2024 Int. J. Remote Sens. 45 5224

    [91]

    Che M, Wang B, Zhao X, Li Y, Chang C, Liu M, Du Y, Qi L, Zhang N, Zou Y, Li S 2024 ACS Nano 18 30884

    [92]

    Wu C H, Ku C J, Yu M W, Yang J H, Wu P Y, Huang C B, Lu T C, Huang J S, Ishii S, Chen K P 2023 Adv. Sci. 10 1

    [93]

    Zhang T, Guo X, Wang P, Fan X, Wang Z, Tong Y, Wang D, Tong L, Li L 2024 Nat. Commun. 15 2471

    [94]

    Bai Q, Huang X, Du S, Guo Y, Li C, Li W, Li J, Gu C 2024 Nanoscale 16 8907

    [95]

    Jiang H, Chen Y, Guo W, Zhang Y, Zhou R, Gu M, Zhong F, Ni Z, Lu J, Qiu C W, Gao W 2024 Nat. Commun. 15 8347

    [96]

    Deng J, Shi M, Liu X, Zhou J, Qin X, Wang R, Zhen Y, Dai X, Chen Y, Wei J, Ni Z, Gao W, Qiu C W, Chen X 2024 Nat. Electron. 7 1004

    [97]

    Maier S A (Maier S A ed) 2007 Plasmonics:Fundamentals and Applications (New York, NY:Springer US) pp21-37

    [98]

    Gogotsi Y, Anasori B 2019 ACS Nano 13 8491

    [99]

    Song Q, Odeh M, Zúñiga-Pérez J, Kanté B, Genevet P 2021 Science 373 1133

    [100]

    Yang Y, Liu S C, Wang X, Li Z, Zhang Y, Zhang G, Xue D J, Hu J S 2019 Adv. Funct. Mater. 29 1900411

    [101]

    Lu L, Joannopoulos J D, Soljačić M 2014 Nat. Photonics 8 821

    [102]

    Gan W, Ming L, Zhang C, Peng G, Cao Z, Chen Z, Li Y, Wu C, Liu X, Song L 2025 ACS Appl. Mater. Interfaces 17 34086

    [103]

    Li H, Xiang Z, Wang T, Naik M H, Kim W, Nie J, Li S, Ge Z, He Z, Ou Y, Banerjee R, Taniguchi T, Watanabe K, Tongay S, Zettl A, Louie S G, Zaletel M P, Crommie M F, Wang F 2024 Nature 631 765

    [104]

    Wan H, Yu S, Lei Y, Zhao Q, Tao G, Luan S, Gui C, Zhou S 2021 Appl. Opt. 60 2783

    [105]

    Yu D, Cao F, Liao J, Wang B, Su C, Xing G 2022 Nat. Commun. 13 6229

    [106]

    Wang Z, Wan T, Ma S, Chai Y 2024 Nat. Nanotechnol. 19 919

    [107]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699

    [108]

    Yan Y, Yan T, Wang F, Zhu Y, Li S, Cai Y, Zhang F, Wang Y, Liu X, Xu K, He J, Zhan X, Lin J, Wang Z 2025 Nano Lett. 25 6125

  • [1] Hou Lei, Guan Shu-Yang, Yin Jun, Zhang Yu-Jun, Xiao Yi-Ming, Xu Wen, Ding Lan. High-order cavity coupled plasmon polaritons in resonant cavity-monolayer MoS2 system. Acta Physica Sinica, doi: 10.7498/aps.73.20241106
    [2] Yang Xiao-Jie, Xu Hui, Xu Hai-Ye, Li Ming, Yu Hong-Fei, Cheng Yu-Xuan, Hou Hai-Liang, Chen Zhi-Quan. Sensing and slow light applications of graphene plasmonic terahertz structure. Acta Physica Sinica, doi: 10.7498/aps.73.20240668
    [3] Duan Yu, Dai Xiao-Kang, Wu Chen-Chen, Yang Xiao-Xia. Tunable acoustic graphene plasmon enhanced nano-infrared spectroscopy. Acta Physica Sinica, doi: 10.7498/aps.73.20240489
    [4] Jiang Yue, Wang Shu-Ying, Wang Zhi-Ye, Zhou Hua, Ka Ma-Le, Zhao Song, Shen Xiang-Qian. Plasmon modes of fishnet metastructure and its trapping and control of light for thin film solar cells. Acta Physica Sinica, doi: 10.7498/aps.70.20210693
    [5] Zhao Cheng-Xiang, Qie Yuan, Yu Yao, Ma Rong-Rong, Qin Jun-Fei, Liu Yan. Enhanced optical absorption of graphene by plasmon. Acta Physica Sinica, doi: 10.7498/aps.69.20191645
    [6] Geng Yi-Fei, Wang Zhu-Ning, Ma Yao-Guang, Gao Fei. Topological surface plasmon polaritons. Acta Physica Sinica, doi: 10.7498/aps.68.20191085
    [7] Xu Fei-Xiang, Li Xiao-Guang, Zhang Zhen-Yu. Some recent advances on quantum plasmonics. Acta Physica Sinica, doi: 10.7498/aps.68.20190331
    [8] Wu Chen-Chen, Guo Xiang-Dong, Hu Hai, Yang Xiao-Xia, Dai Qing. Graphene plasmon enhanced infrared spectroscopy. Acta Physica Sinica, doi: 10.7498/aps.68.20190903
    [9] Wang Chong, Xing Qiao-Xia, Xie Yuan-Gang, Yan Hu-Gen. Spectroscopic studies of plasmons in topological materials. Acta Physica Sinica, doi: 10.7498/aps.68.20191098
    [10] Wu Reng-Lai, Xiao Shi-Fa, Xue Hong-Jie, Quan Jun. Quantization of plasmon in two-dimensional square quantum dot system. Acta Physica Sinica, doi: 10.7498/aps.66.227301
    [11] Tao Ze-Hua, Dong Hai-Ming. Electron screening lengths and plasma spectrum in single layer MoS2. Acta Physica Sinica, doi: 10.7498/aps.66.247701
    [12] Yin Hai-Feng, Mao Li. Nonlinear excitation of localized plasmon in one-dimensional atomic chain. Acta Physica Sinica, doi: 10.7498/aps.65.087301
    [13] Zhang Chao-Jie, Zhou Ting, Du Xin-Peng, Wang Tong-Biao, Liu Nian-Hua. Enhancement of quantum friction via coupling of surface phonon polariton and graphene plasmons. Acta Physica Sinica, doi: 10.7498/aps.65.236801
    [14] Zeng Ting-Ting, Li Peng-Cheng, Zhou Xiao-Xin. Single isolated attosecond pulse generated by helium atom exposed to the two laser pulses with the same color and midinfrared intense laser pulse in the plasmon. Acta Physica Sinica, doi: 10.7498/aps.63.203201
    [15] Yin Hai-Feng, Zhang Hong, Yue Li. Plasmon excitation in C60 fullerene dimers. Acta Physica Sinica, doi: 10.7498/aps.63.127303
    [16] Tan Zi, Wang Lu-Xia. Plasmon effects on linear spectra related to heterogeneous electron transfer. Acta Physica Sinica, doi: 10.7498/aps.62.237303
    [17] Xin Wang, Wu Reng-Lai, Xue Hong-Jie, Yu Ya-Bin. Plasmonic excitations in mesoscopic-sized atomic chains:a tight-binding model. Acta Physica Sinica, doi: 10.7498/aps.62.177301
    [18] Zhang Xing-Fang, Yan Xin. Tunable properties of localized surface plasmon resonance wavelength of gold nanoshell. Acta Physica Sinica, doi: 10.7498/aps.62.037805
    [19] Zou Wei-Bo, Zhou Jun, Jin Li, Zhang Hao-Peng. Properties of localized surface plasmon resonance of gold nanoshell pairs. Acta Physica Sinica, doi: 10.7498/aps.61.097805
    [20] Cong Chao, Wu Da-Jian, Liu Xiao-Jun. Localized surface plasmon resonance propertiesof elliptical gold nanotubes. Acta Physica Sinica, doi: 10.7498/aps.60.046102
Metrics
  • Abstract views:  172
  • PDF Downloads:  3
  • Cited By: 0
Publishing process
  • Available Online:  30 September 2025
  • /

    返回文章
    返回
    Baidu
    map