-
The increasing demands for high-speed imaging, aerospace, and optical communication have driven in-depth research on broadband photodetectors with high sensitivity and fast response. Two-dimensional (2D) materials have atomic-scale thickness, tunable bandgaps, and excellent carrier transport properties, making them ideal candidates for next-generation optoelectronics. However, their limited light absorption and intrinsic recombination losses remain key challenges. This paper provides an overview of recent progress of 2D-material-based broadband photodetectors. First, the fundamental optoelectronic properties of 2D materials, including bandgap modulation, carrier dynamics, and light–matter interactions, are discussed to clarify their broadband detection potential. Representative material systems, such as narrow-band gap semiconductors, 2D topological materials, and perovskites, are summarized, showing the detection ability from the ultraviolet to the mid-infrared regions. To overcome intrinsic limitations, four optimization strategies are highlighted: heterostructure engineering for efficient charge separation and extended spectral response; defect engineering to introduce mid-gap states and enhance sub-bandgap absorption; optical field enhancement through plasmonic nanostructures and optical cavities to improve responsivity; strain engineering for reversible band structure tuning, particularly suited for flexible devices. These strategies have achieved significant improvements in responsivity, detectivity, and bandwidth, with some devices implementing ultrabroadband detection and multifunctionality. In summary, 2D materials and their hybrids have shown great potential in broadband photodetection, with progress made in material innovation and device architecture optimization. The reviewed strategies—heterostructure integration, defect modulation, optical field enhancement, and strain engineering—collectively demonstrate the different ways of overcoming intrinsic limitations and improving device performance. Looking ahead to the future, the reasonable combination of these methods is expected to further expand the detection window, improve sensitivity, and achieve multifunctional operations, thereby paving the way for the multifunctional applications of the next-generation broadband photodetectors in imaging, sensing, and optoelectronic systems
-
Keywords:
- two-dimensional materials /
- broadband photodetectors /
- heterostructure integration /
- regulatory strategies
-
图 1 典型二维材料及其带隙范围[11]. 图中展示了多种二维材料及其晶体结构的侧视图, 并按带隙大小从左至右排列. 每种材料下方的线条表示其从块体到单层的带隙变化范围. 黑线表示单层带隙大于块体带隙, 红线则表示相反情况. 左侧灰框中为零带隙或近零带隙的金属或半金属材料. 下方带隙/波长坐标轴用于显示各材料对应的光谱响应能力
Figure 1. Typical 2D materials and their bandgap ranges. Figure shows side views of a variety of 2D materials and their crystal structures, arranged from left to right by bandgap size. The lines below each material indicate the range of bandgap variation from bulk to monolayer. The black line indicates that the monolayer bandgap is larger than the bulk bandgap, and the red line indicates the opposite. The gray box on the left is a metal or semimetal material with zero or near-zero bandgap. The bandgap/wavelength coordinate axis below is used to show the spectral response capability of each material. Reproduced from Ref. [11], with the permission of Springer Nature.
图 2 基于二维材料的复合结构示意图以及实例 (a) 二维材料与其他材料复合示意图[44]; (b) 全二维材料复合结构[45]; (c) 二维材料与体材料复合结构[46]; (d) 二维材料与量子点材料复合体系[47]
Figure 2. Schematic diagrams of composite structures based on two-dimensional materials and examples: (a) Schematic diagram of two-dimensional materials composited with other materials (Reproduced from Ref. [44], with the permission of Springer Nature); (b) all two-dimensional material composite structure (Reproduced from Ref. [45], with the permission of John Wiley and Sons); (c) two-dimensional material and bulk material composite structure (Reproduced from Ref. [46], with the permission of American Chemical Society); (d) two-dimensional material and quantum dot material composite system(Reproduced from Ref. [47], with the permission of American Chemical Society).
图 3 (a) 黑磷的晶体结构示意图和固有黑磷、砷(As)元素掺杂、碳(C)元素掺杂以及通过电场和应变调谐的的中红外光响应[53]; (b) 黑磷带隙的层数依赖性[54]; (c) 黑磷光电探测器的光响应率[55]; (d), (e) 砷掺杂黑磷光电探测器的示意图以及其光响应度和外量子效率[56]
Figure 3. (a) Schematic diagram of the crystal structure of BP and mid-infrared optical response of pristine BP, arsenic (As) element-doped, carbon (C) element-doped, and electric field and strain-tuned BP (Reproduced from Ref. [53], with the permission of John Wiley and Sons); (b) layer dependence of the bandgap of BP (Reproduced from Ref. [54], with the permission of American Physical Society); (c) photoresponsivity of BP photodetector. (Reproduced from Ref. [55], with the permission of Springer Nature); (d), (e) schematic diagram of arsenic-doped BP photodetector and its photoresponsivity and EQE (Reproduced from Ref. [56], with the permission of the authors).
图 4 (a) PdSe2光电探测器的结构示意图以及多层PdSe2的吸收光谱[62]; (b) In2Se3光电探测器的结构示意图及其在不同波长下的响应度[63]; (c) SnS光电探测器的结构示意图以及SnS薄膜的吸收光谱[64]
Figure 4. (a) Schematic diagram of the PdSe2 photodetector structure and absorption spectrum of multilayer PdSe2 (Reproduced from Ref. [62], with the permission of John Wiley and Sons); (b) schematic diagram of the In2Se3 photodetector structure and its responsivity R at different wavelengths (Reproduced from Ref. [63], with the permission of IOP Publishing); (c) schematic diagram of the SnS photodetector structure and absorption spectrum of SnS film (Reproduced from Ref. [64], with the permission of IOP Publishing).
图 5 (a), (b) 拓扑绝缘体[67]和拓扑半金属(狄拉克半金属、外尔半金属和节点线半金属)[68]的能带结构示意图; (c) 各种拓扑绝缘体的带隙值及其相应的检测范围[67]; (d) 部分二维层状拓扑半金属的检测范围[68]
Figure 5. (a), (b) Schematic diagrams of energy band structures of topological insulator (Reproduced from Ref. [67], with the permission of Elsevier) and topological semimetals (Dirac semimetal, Weyl semimetal, and nodal line semimetal) (Reproduced from Ref. [68], with the permission of John Wiley and Sons); (c) bandgap values of various topological insulators (TI) and their corresponding detection ranges (Reproduced from Ref. [67], with the permission of Elsevier); (d) detection ranges of some 2D layered topological semimetals (LTSM) (Reproduced from Ref. [68], with the permission of John Wiley and Sons).
图 6 (a) 二维钙钛矿的结构示意图[82]; (b), (c) 在钙钛矿材料(CH3(CH2)3NH3)2(CH3NH3)n–1PbnI3n+1中, 通过改变Pb的含量(n)可以调控其带隙大小[83]; (c) 钙钛矿材料(C4H9NH3)n(CH3NH3)n–1PbnI3n+1的迁移率和电导随量子阱厚度的变化, 表明其潜在的高光电转换效率[84]
Figure 6. (a) Schematic diagram of the structure of two-dimensional perovskite (Reproduced from Ref. [82], with the permission of Elsevier); (b), (c) in perovskite material (CH3(CH2)3NH3)2(CH3NH3)n–1PbnI3n+1, the bandgap can be tuned by varying the Pb content (n) (Reproduced from Ref. [83], with the permission of Springer Nature); (c) mobility and conductance of perovskite material (C4H9NH3)n(CH3NH3)n–1PbnI3n+1 as a function of quantum well thickness, demonstrating its potential for high photoelectric conversion efficiency (Reproduced from Ref. [84], with the permission of American Chemical Society).
图 7 (a) MoSe2/WSe2 异质结的器件结构与能带结构示意图[89]; (b) MoTe2/ReS2 异质结构在不同波长下的响应度以及其器件结构与能带结构示意图[90]; (c) 石墨烯与WS2-WSe2超结构的器件结构与能带结构示意图[91]
Figure 7. (a) Schematic diagrams of device structure and energy band structure of MoSe2/WSe2 heterostructure (Reproduced from Ref. [89], with the permission of John Wiley and Sons); (b) responsivity of MoTe2/ReS2 heterostructure at different wavelengths and schematic diagrams of device structure and energy band structure (Reproduced from Ref. [90], with the permission of American Chemical Society); (c) schematic diagrams of device structure and energy band structure of graphene and WS2-WSe2 superlattice (Reproduced from Ref. [91], with the permission of American Chemical Society).
图 8 (a)—(c) ReS2/MoS2量子点异质结构的示意图及其在不同探测波长下的响应度和能带结构示意图[92]; (d), (e) PbI2/Sb2S3纳米线的器件图及其在不同探测波长下的响应度[93]; (f), (g) MoS2/GaN异质结构的示意图及其在不同探测波长下的响应度[94]
Figure 8. (a)–(c) Schematic diagram of ReS2/MoS2 quantum dot heterostructure and its responsivity at different detection wavelengths and energy band structure diagram (Reproduced from Ref. [92], with the permission of American Chemical Society); (d), (e) device diagram of PbI2/Sb2S3 nanowires and their responsivity at different detection wavelengths (Reproduced from Ref. [93], with the permission of Royal Society of Chemistry); (f), (g) schematic diagram of MoS2/GaN heterostructure and its responsivity at different detection wavelengths (Reproduced from Ref. [94], with the permission of American Chemical Society).
图 9 (a) 超宽带WS2/AlOx/Ge异质结光电探测器的结构和能带示意图, 以及其在不同波长下的比探测率[100]; (b) 二维α-Ga2Se3器件结构示意图及其在不同探测波长和暗态条件下的I–V特性曲线, 以及相应的光响应度和开关比[101]; (c) 二维LiInP2Se6器件结构示意图以及其532 nm下的比探测率和其他波长下的光响应[102]
Figure 9. (a) Structure and energy band diagram of ultra-broadband WS2/AlOx/Ge heterostructure photodetector and its specific detectivity at different wavelengths (Reproduced from Ref. [100], with the permission of American Chemical Society); (b) schematic diagram of two-dimensional α-Ga2Se3 device structure and its I-V characteristic curves under different detection wavelengths and dark conditions, along with the corresponding photoresponsivity and on/off ratio (Reproduced from Ref. [101], with the permission of John Wiley and Sons); (c) schematic diagram of two-dimensional LiInP2Se6 device structure and its specific detectivity at 532 nm and photoresponse at other wavelengths (Reproduced from Ref. [102], with the permission of American Chemical Society).
图 10 (a) 引入金纳米颗粒的p-MoS2/n-ZnO异质结结构示意图及其在不同响应波长下的性能提升对比[106]; (b) 单壁碳纳米管/石墨烯异质结三维光电探测器结构示意图及其在不同探测波长下的响应度[109]
Figure 10. (a) Schematic diagram of p-MoS2/n-ZnO heterostructure with incorporated gold nanoparticles and performance enhancement comparison at different response wavelengths (Reproduced from Ref. [106], with the permission of Elsevier); (b) schematic diagram of single-walled carbon nanotube/graphene heterostructure three-dimensional photodetector structure and its responsivity at different detection wavelengths (Reproduced from Ref. [109], with the permission of RSC Pub).
图 11 (a), (b) 不同应变条件下光电流变化的时间响应, 以及在紫外和可见光照射下光响应度随应变变化的关系图[114]; (c), (d) MoS2/Sb2Te3异质结的结构示意图及其在不用应变下的响应度变化[115]
Figure 11. (a), (b) Temporal response of photocurrent changes under different strain conditions and the relationship between photoresponsivity and strain under ultraviolet and visible light illumination (Reproduced from Ref. [114], with the permission of IOP Publishing); (c), (d) schematic diagram of MoS2/Sb2Te3 heterostructure and its responsivity variation under different strains (Reproduced from Ref. [115], with the permission of MDPI).
表 1 二维拓扑材料及其异质结构的光电性能
Table 1. Optoelectronic properties of two-dimensional topological materials and their heterostructures.
材料 探测波长 比探测率 响应度 参考文献 λ/nm D*/Jones R/(A·W–1) Bi2Te3 325—1500 3.8×109 74 [69] SnTe 405—3800 — 3.75 [70] Pb1–xSnxSe 375—2000 1.14×1012 0.21 [75] SnTe/Si 254—1550 8.4×1012 0.128 [76] Bi2Te3/Si 370—118000 2.5×1011 11 [77] Graphene/Bi2Te3/GaAs 405—4500 3.1×1012 0.67 [78] PtTe2 0.02—0.3 THz — 1.98 [73] Td-MoTe2 325—566000 — 3.8×10–3 [74] TaIrTe4 0.1—10 THz — 18 [79] NbIrTe4/Graphene 0.02—0.3 THz — 264.6 V/W [80] TaIrTe4/WSe2 405—808 3.09×1012 9.1 [81] -
[1] Guan R Q, Xu H, Lou Z, Zhao Z, Wang L L 2024 Adv. Sci. 11 2402530
Google Scholar
[2] Luo J Y, Selopal G S, Tong X, Wang Z M 2024 Electron 2 e30
Google Scholar
[3] Mearaj T, Farooq A, Hafiz A K, Khanuja M, Zargar R A, Bhat A A 2024 ACS Appl. Bio Mater. 7 3483
Google Scholar
[4] Ma T J, Xue N, Muhammad A, Fang G, Yan J Y, Chen R K, Sun J H, Sun X G 2024 Micromachines 15 1249
Google Scholar
[5] Liu X Z, Yang X Z, Tang Q, Lv Y, Zhang G, Feng W L 2024 J. Phys. D: Appl. Phys. 57 373002
Google Scholar
[6] Yao J D, Yang G W 2020 Nanoscale 12 454
Google Scholar
[7] Xia F N, Wang H, Xiao D, Dubey M, Ramasubramaniam A 2014 Nat. Photonics 8 899
Google Scholar
[8] Long M S, Wang P, Fang H H, Hu W D 2019 Adv. Funct. Mater. 29 1803807
Google Scholar
[9] Shuck C E, Xiao X, Wang Z Y 2024 Acc. Chem. Res. 57 3079
Google Scholar
[10] Song J M, Yu Y F, Zheng T, Cui Y Y, Chen Q S, Zhao W W, Yang F, Lu J P, Liu H W, Ni Z H 2025 Appl. Phys. Lett. 126 043102
Google Scholar
[11] Chaves A, Azadani J G, Alsalman H, da Costa D R, Frisenda R, Chaves A J, Song S H, Kim Y D, He D, Zhou J, Castellanos-Gomez A, Peeters F M, Liu Z, Hinkle C L, Oh S H, Ye P D, Koester S J, Lee Y H, Avouris P, Wang X R, Low T 2020 npj 2D Mater. Appl. 4 29
Google Scholar
[12] Tian Y, Liu H, Li J, Liu B D, Liu F 2025 Nanomaterials 15 431
Google Scholar
[13] Dhanabalan S C, Ponraj J S, Zhang H, Bao Q L 2016 Nanoscale 8 6410
Google Scholar
[14] Zulfiqar M W, Nisar S, Dastgeer G, Rabeel M, Ghazanfar H, Ali A, Imran M, Kim H, Kim D K 2025 Nanoscale 17 17881
Google Scholar
[15] Rani A, Verma A, Yadav B C 2024 Mater. Adv. 5 3535
Google Scholar
[16] Li X, Liu K X, Wu D, Lin P, Shi Z F, Li X J, Zeng L H, Chai Y, Lau S P, Tsang Y H 2025 Adv. Mater. n/a 2415717
[17] Hosseini M, Elahi M, Pourfath M, Esseni D 2015 IEEE Trans. Electron Devices 62 3192
Google Scholar
[18] Zhang R, Koutsos V, Cheung R 2016 Appl. Phys. Lett. 108 042104
Google Scholar
[19] Xiang D, Han C, Zhang J L, Chen W 2014 Sci. Rep. 4 4891
Google Scholar
[20] Shu H B, Li Y H, Niu X H, Wang J L 2016 ACS Appl. Mater. Interfaces 8 13150
Google Scholar
[21] Yin C D, He S X, Fan X F, Xiao Y K, Zhao L C, Gao L M 2024 Adv. Opt. Mater. 12 2401122
Google Scholar
[22] Ouyang Y, Zhang C Y, Wang J, Guo Z, Wang Z G, Dong M D 2025 Adv. Sci. 12 2416259
Google Scholar
[23] Liao L, Peng H L, Liu Z F 2014 J. Am. Chem. Soc. 136 12194
Google Scholar
[24] Tiwari S K, Sahoo S, Wang N N, Huczko A 2020 J. Sci. : Adv. Mater. Devices 5 10
Google Scholar
[25] Dumcenco D, Ovchinnikov D, Marinov K, Lazić P, Gibertini M, Marzari N, Sanchez O L, Kung Y C, Krasnozhon D, Chen M W, Bertolazzi S, Gillet P, Fontcuberta i Morral A, Radenovic A, Kis A 2015 ACS Nano 9 4611
Google Scholar
[26] Rai A, Movva H C P, Roy A, Taneja D, Chowdhury S, Banerjee S K 2018 Crystals 8 316
Google Scholar
[27] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033
Google Scholar
[28] Xu Y J, Yuan J, Zhang K, Hou Y, Sun Q, Yao Y M, Li S J, Bao Q L, Zhang H, Zhang Y G 2017 Adv. Funct. Mater. 27 1702211
Google Scholar
[29] Zhang M, Biesold G M, Lin Z Q 2021 Chem. Soc. Rev. 50 13346
Google Scholar
[30] Mu X, Wang J, Sun M 2019 Mater. Today Phys. 8 92
Google Scholar
[31] Han F W, Xu W, Li L L, Zhang C, Dong H M, Peeters F M 2017 Phys. Rev. B 95 115436
Google Scholar
[32] Long G, Maryenko D, Shen J Y, Xu S G, Hou J Q, Wu Z F, Wong W K, Han T Y, Lin J X Z, Cai Y, Lortz R, Wang N 2016 Nano Lett. 16 7768
Google Scholar
[33] Sun Y H, Wang R M, Liu K 2017 Appl. Phys. Rev. 4 011301
Google Scholar
[34] Zhang X L, Huang J C, Zuo H Z, Zhang Y F, Yang R Z, Chen J L, Li G J, Li W, Peng Z Y 2025 Sol. Energy Mater. Sol. Cells 292 113798
Google Scholar
[35] Liu F, Fan Z X 2023 Chem. Soc. Rev. 52 1723
Google Scholar
[36] Zhang X J, Shao Z B, Zhang X H, He Y Y, Jie J S 2016 Adv. Mater. 28 10409
Google Scholar
[37] Malik M, Iqbal M A, Choi J R, Pham P V 2022 Front. Chem. 10 905404
Google Scholar
[38] Xu Y J, Shen H L, Wu D, Zhao Q C, Wang Z H, Ge J W, Zhang W 2022 J. Alloys Compd. 902 163878
Google Scholar
[39] 舒衍涛, 张有为, 王顺 2021 70 177301
Google Scholar
Shu Y T, Zhang Y W, Wang S 2021 Acta Phys. Sin. 70 177301
Google Scholar
[40] Hanbicki A T, Currie M, Kioseoglou G, Friedman A L, Jonker B T 2015 Solid State Commun. 203 16
Google Scholar
[41] Yuan H T, Liu X G, Afshinmanesh F, Li W, Xu G, Sun J, Lian B, Curto A G, Ye G J, Hikita Y, Shen Z X, Zhang S C, Chen X H, Brongersma M, Hwang H Y, Cui Y 2015 Nat. Nanotechnol. 10 707
Google Scholar
[42] Xu Y H, Liu J Q 2016 Small 12 1400
Google Scholar
[43] Li Q, Lu J, Gupta P, Qiu M 2019 Adv. Opt. Mater. 7 1900595
Google Scholar
[44] Liu Y, Huang Y, Duan X F 2019 Nature 567 323
Google Scholar
[45] Gao S, Wang Z Q, Wang H D, Meng F X, Wang P F, Chen S, Zeng Y H, Zhao J L, Hu H G, Cao R, Xu Z Q, Guo Z N, Zhang H 2021 Adv. Mater. Interfaces 8 2001730
Google Scholar
[46] Shin G H, Park J, Lee K J, Lee G B, Jeon H B, Choi Y K, Yu K, Choi S Y 2019 ACS Appl. Mater. Interfaces 11 7626
Google Scholar
[47] Gong M G, Liu Q F, Cook B, Kattel B, Wang T, Chan W L, Ewing D, Casper M, Stramel A, Wu J Z 2017 ACS Nano 11 4114
Google Scholar
[48] Liu C Y, Guo J S, Yu L W, Li J, Zhang M, Li H, Shi Y C, Dai D X 2021 Light Sci. Appl. 10 123
Google Scholar
[49] Zhou J S, Yang J H, Wei Z M 2020 J. Semicond. 41 080401
Google Scholar
[50] Wang P Q, Jia C C, Huang Y, Duan X F 2021 Matter 4 552
Google Scholar
[51] Mukherjee S, Bhattacharya D, Patra S, Paul S, Mitra R K, Mahadevan P, Pal A N, Ray S K 2022 ACS Appl. Mater. Interfaces 14 5775
Google Scholar
[52] Dong T, Simões J, Yang Z C 2020 Adv. Mater. Interfaces 7 1901657
Google Scholar
[53] Zhang L, Wang B, Zhou Y H, Wang C, Chen X L, Zhang H 2020 Adv. Opt. Mater. 8 2000045
Google Scholar
[54] Rudenko A N, Yuan S, Katsnelson M I 2015 Phys. Rev. B 92 085419
Google Scholar
[55] Chen X L, Lu X B, Deng B C, Sinai O, Shao Y C, Li C, Yuan S F, Tran V, Watanabe K, Taniguchi T, Naveh D, Yang L, Xia F N 2017 Nat. Commun. 8 1672
Google Scholar
[56] Long M S, Gao A Y, Wang P, Xia H, Ott C, Pan C, Fu Y J, Liu E, Chen X S, Lu W, Nilges T, Xu J, Wang X M, Hu W D, Miao F 2017 Sci. Adv. 3 e1700589
Google Scholar
[57] Xu M, Gu Y Q, Peng R M, Youngblood N, Li M 2017 Appl. Phys. B 123 130
[58] Suess R J, Leong E, Garrett J L, Zhou T, Salem R, Munday J N, Murphy T E, Mittendorff M 2016 2D Mater. 3 041006
Google Scholar
[59] Shen C F, Liu Y H, Wu J B, Xu C, Cui D Z, Li Z, Liu Q Z, Li Y R, Wang Y X, Cao X, Kumazoe H, Shimojo F, Krishnamoorthy A, Kalia R K, Nakano A, Vashishta P D, Amer M R, Abbas A N, Wang H, Wu W Z, Zhou C W 2020 ACS Nano 14 303
Google Scholar
[60] Amani M, Tan C L, Zhang G, Zhao C S, Bullock J, Song X H, Kim H, Shrestha V R, Gao Y, Crozier K B, Scott M, Javey A 2018 ACS Nano 12 7253
Google Scholar
[61] Niu Y Y, Wu D, Su Y Q, Zhu H, Wang B, Wang Y X, Zhao Z R, Zheng P, Niu J S, Zhou H B, Wei J, Wang N L 2018 2D Mater. 5 011008
[62] Liang Q J, Wang Q X, Zhang Q, Wei J X, Lim S X, Zhu R, Hu J X, Wei W, Lee C, Sow C, Zhang W J, Wee A T S 2019 Adv. Mater. 31 1807609
Google Scholar
[63] Feng W, Gao F, Hu Y X, Dai M J, Li H, Wang L F, Hu P A 2018 Nanotechnology 29 445205
Google Scholar
[64] Zhang B, Liu Y J, Hu B, Guo F H, Zhang M C, Li S Q, Yu W Z, Hao L Z 2024 2D Mater. 11 025024
Google Scholar
[65] Yan B H, Felser C 2017 Annu. Rev. Condens. Matter Phys. 8 337
Google Scholar
[66] Kou L Z, Ma Y D, Sun Z, Heine T, Chen C F 2017 J. Phys. Chem. Lett. 8 1905
Google Scholar
[67] Yang M, Zhou H X, Wang J 2022 Mater. Today Commun. 33 104190
Google Scholar
[68] Yu H H, Zeng H R, Zhang Y Z, Liu Y H, ShangGuan W, Zhang X K, Zhang Z, Zhang Y 2025 Adv. Funct. Mater. 35 2412913
Google Scholar
[69] Sharma A, Srivastava A K, Senguttuvan T D, Husale S 2017 Sci. Rep. 7 17911
Google Scholar
[70] Jiang T, Zang Y Y, Sun H H, Zheng X, Liu Y, Gong Y, Fang L, Cheng X A, He K 2017 Adv. Opt. Mater. 5 1600727
Google Scholar
[71] Li Y, Yu W Z, Zhang K, Cui N, Yun T H, Xia X, Jiang Y, Zhang G Y, Mu H R, Lin S H 2024 Mater. Horiz. 11 2572
Google Scholar
[72] Liu C H, Chang Y C, Norris T B, Zhong Z H 2014 Nat. Nanotechnol. 9 273
Google Scholar
[73] Dong Z, Yu W Z, Zhang L B, Yang L, Huang L Y, Zhang Y, Ren Z Q, Mu H R, Chen C, Zhang J R, Li J, Wang L, Zhang K 2023 InfoMat 5 e12403
Google Scholar
[74] Yang Q, Wang X M, He Z H, Chen Y J, Li S W, Chen H J, Wu S X 2023 Adv. Sci. 10 2205609
Google Scholar
[75] Wang Q S, Wen Y, Yao F R, Huang Y, Wang Z X, Li M L, Zhan X Y, Xu K, Wang F M, Wang F, Li J, Liu K H, Jiang C, Liu F Q, He J 2015 Small 11 5388
Google Scholar
[76] Gu S H, Ding K, Pan J, Shao Z B, Mao J, Zhang X J, Jie J S 2017 J. Mater. Chem. A 5 11171
Google Scholar
[77] Yao J D, Shao J M, Wang Y X, Zhao Z R, Yang G W 2015 Nanoscale 7 12535
Google Scholar
[78] Zhang X C, Liu X C, Zhang C Y, Peng S L, Zhou H X, He L, Gou J, Wang X R, Wang J 2022 ACS Nano 16 4851
Google Scholar
[79] Xi T R, Jiang H T, Li J X, He Y C, Gu Y C, Fox C, Primeau L, Mao Y L, Rollins J, Taniguchi T, Watanabe K, van der Weide D, Rhodes D, Zhang Y, Wang Y, Xiao J 2025 Nat. Electron. 8 578
Google Scholar
[80] He Y, Yang L, Hu Z, Zhang L B, Pan X K, Wei Y, Guo S G, Lv X Y, Jiang M J, Han L, Wang D, Lan S Q, Sun X, Chen X S, Zhang K, Wang L 2024 Adv. Funct. Mater. 34 2311008
Google Scholar
[81] Ye Q J, Lu J T, Yi H X, Zheng Z Q, Ma C R, Du C, Zou Y C, Yao J D, Yang G W 2022 Appl. Phys. Lett. 120 181104
Google Scholar
[82] Kim E B, Akhtar M S, Shin H S, Ameen S, Nazeeruddin M K 2021 J. Photochem. Photobiol. , C 48 100405
Google Scholar
[83] Leng K, Abdelwahab I, Verzhbitskiy I, Telychko M, Chu L Q, Fu W, Chi X, Guo N, Chen Z H, Chen Z X, Zhang C, Xu Q H, Lu J, Chhowalla M, Eda G, Loh K P 2018 Nat. Mater. 17 908
Google Scholar
[84] Wang K, Wu C C, Yang D, Jiang Y Y, Priya S 2018 ACS Nano 12 4919
Google Scholar
[85] Zha Y F, Wang Y, Sheng Y H, Zhang X W, Shen X Y, Xing F J, Liu C H, Di Y S, Cheng Y C, Gan Z X 2022 Appl. Phys. Lett. 121 191904
Google Scholar
[86] Liu Y, Wu C J, Guan X N, Lu P F, Chen W, Zhao F Y, Gu C J, Shen X 2025 ACS Appl. Electron. Mater. 7 2128
Google Scholar
[87] Wei S L, Wang F, Zou X M, Wang L M, Liu C, Liu X Q, Hu W D, Fan Z Y, Ho J C, Liao L 2020 Adv. Mater. 32 1907527
Google Scholar
[88] Li Z Q, Hong E L, Zhang X Y, Deng M, Fang X S 2022 J. Phys. Chem. Lett. 13 1215
Google Scholar
[89] Xue H, Wang Y D, Dai Y Y, Kim W, Jussila H, Qi M, Susoma J, Ren Z Y, Dai Q, Zhao J L, Halonen K, Lipsanen H, Wang X M, Gan X T, Sun Z P 2018 Adv. Funct. Mater. 28 1804388
Google Scholar
[90] Ahn J, Kyhm J H, Kang H K, Kwon N, Kim H K, Park S, Hwang D K 2021 ACS Photonics 8 2650
Google Scholar
[91] Tsai M Y, Tsai T H, Gandhi A C, Lu H L, Li J X, Chen P L, Chen K W, Chen S Z, Chen C H, Liu C H, Lin Y F, Chiu P W 2023 ACS Nano 17 25037
Google Scholar
[92] Polumati G, Kolli C S R, Flores M, Kumar A, Sanghvi A, Bugallo A D L, Sahatiya P 2024 ACS Appl. Mater. Interfaces 16 19261
Google Scholar
[93] Fu S L, Liu X H, Man J X, Ou Q H, Zheng X L, Liu Z Y, Zhu T, Wang H E 2024 J. Mater. Chem. C 12 3353
Google Scholar
[94] Jain S K, Low M X, Taylor P D, Tawfik S A, Spencer M J S, Kuriakose S, Arash A, Xu C L, Sriram S, Gupta G, Bhaskaran M, Walia S 2021 ACS Appl. Electron. Mater. 3 2407
Google Scholar
[95] Jia Y F, Wei X, Zhang Z H, Liu J, Tian Y, Zhang Y, Guo T T, Fan J B, Ni L, Luan L J, Duan L 2021 CrystEngComm 23 1033
Google Scholar
[96] Wu E P, Wu D, Jia C, Wang Y G, Yuan H Y, Zeng L H, Xu T T, Shi Z F, Tian Y T, Li X J 2019 ACS Photonics 6 565
Google Scholar
[97] 吴甜, 姚梦丽, 龙孟秋 2021 70 056301
Google Scholar
Wu T, Yao M L, Long M Q 2021 Acta Phys. Sin. 70 056301
Google Scholar
[98] Jiang J, Xu T, Lu J P, Sun L T, Ni Z H 2019 Research 2019 4641739
[99] Song J M, Zheng T, Wei X, Zhao X W, Cui Y Y, Sun C D, Zhang Y, Wei Z Y, Zhao W W, Lu J P, Ni Z H 2024 ACS Appl. Nano Mater. 7 1598
Google Scholar
[100] Wu D, Guo J W, Wang C Q, Ren X Y, Chen Y S, Lin P, Zeng L H, Shi Z F, Li X J, Shan C X, Jie J S 2021 ACS Nano 15 10119
Google Scholar
[101] Zhou N, Li H R, Li X B, Dang Z W, Sun Z D, Deng S J, Li J H, Xie Y, Xu H, Xia F F, Zhai T Y 2024 Small Struct. 5 2400062
Google Scholar
[102] Sun L J, Wang S L, Ma C, Wei L M, Tao X T, Wang S P 2024 ACS Appl. Opt. Mater. 2 679
Google Scholar
[103] Peng L S, Zheng T, Wu Z T, Zheng L, Zhang Y 2025 J. Alloys Compd. 1011 178338
Google Scholar
[104] Li L, Wu Q Q, Wang C L, Cai Z Y, Lin L L, Gu X F, Ostrikov K K, Nan H Y, Xiao S Q 2024 ACS Photonics 11 2615
Google Scholar
[105] Alamri M, Gong M G, Cook B, Goul R, Wu J Z 2019 ACS Appl. Mater. Interfaces 11 33390
Google Scholar
[106] Zhang J, Zhang X L, Li J, Ma Z Y, Leng B, Xia Q X, Shen L H, Song Y D, Fu Z W, Feng S Y, Feng L Z, Liu Z T, Yuldashev S, Jiang X, Liu B D 2022 Opt. Mater. 124 111997
Google Scholar
[107] Noori Y J, Cao Y M, Roberts J, Woodhead C, Bernardo-Gavito R, Tovee P, Young R J 2016 ACS Photonics 3 2515
Google Scholar
[108] Jiang F Q, Shi M D, Zhou J, Bu Y, Ao J P, Chen X S 2021 Adv. Photonics Res. 2 2000187
Google Scholar
[109] Zhang Y, Li Y N, You Q, Sun J Y, Li K, Hong H, Kong L B, Zhu M Q, Deng T, Liu Z W 2023 Nanoscale 15 1402
Google Scholar
[110] Suk J W, Piner R D, An J, Ruoff R S 2010 ACS Nano 4 6557
Google Scholar
[111] Manzeli S, Allain A, Ghadimi A, Kis A 2015 Nano Lett. 15 5330
Google Scholar
[112] Desai S B, Seol G, Kang J S, Fang H, Battaglia C, Kapadia R, Ager J W, Guo J, Javey A 2014 Nano Lett. 14 4592
Google Scholar
[113] Hosseini M, Elahi M, Pourfath M, Esseni D 2015 J. Phys. D: Appl. Phys. 48 375104
Google Scholar
[114] Sahatiya P, Solomon Jones S, Thanga Gomathi P, Badhulika S 2017 2D Mater. 4 025053
Google Scholar
[115] Wang H, Dong C B, Gui Y L, Ye J, Altaleb S, Thomaschewski M, Movahhed Nouri B, Patil C, Dalir H, Sorger V J 2023 Nanomaterials 13 1973
Google Scholar
[116] Lu D L, Chen Y, Kong L, Luo C B, Lu Z Y, Tao Q Y, Song W J, Ma L K, Li Z W, Li W Y, Liu L T, Li Q Y, Yang X D, Li J, Li J, Duan X D, Liao L, Liu Y 2022 Small 18 2107104
Google Scholar
Metrics
- Abstract views: 519
- PDF Downloads: 27
- Cited By: 0









DownLoad: