-
The lower friction coefficient and better mechanical properties of palladium (Pd) alloys make them potentially advantageous for use in high-precision instruments and devices that require long-term stable performance. However, due to the high cost of raw materials and experimental expenses, there is a lack of fundamental data, hindering the design of high-performance Pd alloys. Therefore, in this study, first-principles calculations were used to determine the lattice constant and elastic modulus of Pd. A dilute solid solution model was established for Pd alloys with 33 elements, including Al, Si, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, and others. The mixing enthalpy, elastic constants, and elastic modulus were calculated. The results show that, except for Mn, Fe, Co, Ni, Ru, Rh, Os, and Ir, all other alloying elements can form solid solutions with Pd. Alloying elements from both sides of the periodic table enhance the ductility of Pd solid solutions, with La, Ag, and Zn having the most significant effects, while Cu and Hf reduce the ductility of Pd. Differential charge density analysis indicates that the electron cloud formed after doping with Ag is spherically distributed, which improves ductility. After doping with Hf, the degree of delocalization around the atoms is maximized, suggesting a strong ionic bond between Hf and Pd, leading to a higher hardness of Pd31Hf.
The datasets presented in this paper are openly available at https://www.doi.org/10.57760/sciencedb.j00213.00186(https://www.scidb.cn/s/uqMzye)-
Keywords:
- First-principles /
- Pd-base alloy /
- mixing enthalpy /
- elastic modulus
-
[1] Gao S L, Fan S S, Yuan C, Cao J W 2023 Aero Weapon. 30(6) 11.(inChinese)[高书亮,樊思思,袁成,曹军伟 2023 航空兵器 30(6) 11 ]
[2] Xu X, Lv J X, Wang Y, Li M, Wang Z, Wang H 2025 Mater. Genome Eng. Adv. 3(2) e69
[3] Jiao L 2018 M. S. Thesis ( Beijing: Beijing University Of Technology) (inChinese) [焦磊 2018 硕士学位论文 (北京:北京工业大学)]
[4] Ma X D, Yu J J, Zhao T 2016 Shandong Ind. Technol. 19 2[马晓东 余建军 赵涛 2016 山东工业技术 19 2]
[5] Su Y J, Fu H D, Bai Y, Jiang X, Xie J X 2020 Acta Metall. Sin. 56 10 1313
[6] Wang Z, Qin M, Zhang P, Xu Y, Que S T, Yan F, Xiang X D 2025 Mater. Genome Eng. Adv. 4 16
[7] Wang H, Xiang Y, Xiang X D, Chen L Q 2015 Sci. Technol. Rev. 33 10 13[汪洪,向勇,项晓东,陈立泉 2015 科技导报33 10 13]
[8] Guo Z K, Li R, He X F, Guo J, Ju S H 2024 Mater. Genome Eng. Adv. 2 4 E 73
[9] Meng H Y, Huang J, Zhao T H, Zhang X Y, Tong Y, Qu J L, Li W D, Jiang L, Meng F C, Chen S Y 2025 Mater. Genome Eng. Adv. 9 3
[10] Wang W Y, Tang B, Shang S L, Wang J, Li S, Wang Y, Zhu J, Wei S, Wang J, Darling K A, Mathaudhu S N, Wang Y, Ren Y, Hui X D, Kecskes L J, Li J, Liu Z K 2019 Acta Mater. 170 231
[11] Xia Y X, He J G, Chen N F, Chen J K 2024 Rare Met. 43 8 3460
[12] Chong X Y, Paz Soldan Palma J, Wang Y, Shang S L, Drymiotis F, Ravi V A, Star K E, Fleurial J P, Liu Z K 2021 Acta Mater. 217
[13] Hu Y C, Tian J 2023 J. Mater. Informat. 3 1
[14] Wang W Y, Gan B, Lin D, Wang J, Wang Y, Tang B, Kou H C, Shang S L, Wang Y, Gao X Y, Song H F, Hui X D, Kecskes L J, Xia Z H, Dahmen K A, Liaw P K, Li J S, Liu Z K 2020 J. Mater. Sci. Technol. 53 192
[15] Zou C, Li J, Wang W Y, Zhang Y, Lin D, Yuan R, Wang X, Tang B, Wang J, Gao X Y, Kou H, Hui X D, Zeng X Q, Ma Q, Song H F, Liu Z K, Xu D S 2021 Acta Mater. 202 211
[16] Liao M Q, Liu Y, Min L, Lai Z H, Han T Y, Yang D, Zhu J C 2018 Harbin Inst. Technol. 101 152
[17] Birch F 1947 Phys. Rev. 71(11) 809
[18] Shang S L, Wang Y, Kim D, Liu Z K 2010 Comput. Mater. Sci. 47 4 1040
[19] Zhou Y X 2021 Ph.D. Dissertation ( Kunming: Kunming University of Science and Technology) (in Chinese) [周云轩 2021 博士学位论文 (昆明:昆明理工大学)]
[20] Chong X, Wei Y, Liang Y, Shang S, Li C, Zhang A, Wei Y, Gao X, Wang Y, Feng J, Chen L, Song H, Liu Z K 2023 J. Mater. Inf. 3 21
[21] Teter D M, Gibbs G V, Boisen M B Jr, Allan D C, Teter M P1995 Phys. Rev. B 52(11) 8064
[22] Huang Z H, Liu G T, Zhang B F, Yan M F, Fu Y D 2020 Phys. Lett. A 384 33
[23] Su Y., Liang C X, Wang D 2023 J. Mater. Inf. 3 14
[24] Duan Y H, Sun Y, Peng M J, Zhou S G 2014 J. Alloys Compd. 595 14
[25] Tang B Y, Chen P, Li D L, Yi J X, Wen L, Peng L M, Ding W J 2010 J. Alloys Compd. 492(1-2) 416
[26] Wang Y, Liao M Q, Bocklund B J, Gao P, Shang S L, Kim H J, Beese A M, Chen L Q, Liu Z K 2021 Calphad 75 102355
[27] Liu Y, Lu Y H, Wang W, Li J, Zhang Y, Yin J, Pan X Q, Chen Y, Li J S, Song H F 2023 J. Mater. Inf. 3 17
[28] Chen R T, Li E, Zou Y 2024 J. Mater. Inf. 4 26
[29] Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X, Burke K 2008 Phys. Rev. Lett. 100(13) 136406
[30] Vega L, Vines F 2020 J. Comput. Chem. 41(30) 2598
[31] Brańka A C, Wojciechowski K W 2008 J Non-Cryst Solids 354 35
[32] i H, Yin J, Wei G, Lai W S, Liu B X, Liu J B 2023 Rare. Met. 42(5) 1663
[33] Li R Y, Duan Y H 2016 Philos. Mag. 96(10) 972
[34] Ozisik H B, Deligoz E, Ozisik H, Ateser E 2020 Mater. Res. Express. 7 025004
[35] Kenneth Barbalace https://EnvironmentalChemistry.com/yogi/periodic/Pd.html [10/12/2025]
[36] Samsonov G V 1968 Handbook of the Physicochemical Properties of the Elements(New York: Springer New)
[37] Peng H J, Xie Y Q, Tao H J 2006 Trans. Nonferrous Met. Soc. China 16(1) 100 [ 彭红建,谢佑卿,陶辉锦 2006 中国有色金属学报 16(1) 100]
[38] Duan Y J, Qiao J C 2022 Acta Phys. Sin. 71 086101[段亚娟,乔吉超 2022 71 086101]
[39] Zhang X, Wang D, Nagaumi H, Wang R, Wu Z, Zhang M, Gao D, Chen H, Wang P, Zhou P, Zhou Y, Wang Z, Li T 2025 Mater. Genome Eng. Adv. 3(2) e70008.
[40] Born M 1939 J. Chem. Phys. 7(8) 591
[41] Wang G C, Jiang Y H, Li Z L, Chong X Y, Feng J 2021 Ceram. Int. 47(4) 4758
[42] Xu X W, Fu K, Li L L, Lu Z M, Zhang X H, Fan Y, Lin J, Liu G D, Luo H Z, Tang C C 2013 Physica B 419 105
[43] Tan F Q, Bai Q G, Yu B, Wang J F, Zhang Z H 2024 Rare Met. 13 5305
[44] Zhuang Y, Chen J C, Yan Z , Lv L U 2015 Mater. Rev. 29(2) 150
[45] Ma W, Huang H, Ding W, Guo S, Liu H X, Cheng X N 2023 Rare. Met. 42(5) 1670
Metrics
- Abstract views: 25
- PDF Downloads: 0
- Cited By: 0









下载: