Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Generation of elliptically polarized isolated attosecond pulses from atoms driven by non-uniform linearly polarized laser fields

TU Qiaoshu ZHANG Xiaofan ZHAN Shiyu QIN Meiyan KE Shaolin LIAO Qing

Citation:

Generation of elliptically polarized isolated attosecond pulses from atoms driven by non-uniform linearly polarized laser fields

TU Qiaoshu, ZHANG Xiaofan, ZHAN Shiyu, QIN Meiyan, KE Shaolin, LIAO Qing
cstr: 32037.14.aps.74.20250948
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Elliptically polarized attosecond pulse has significant applications in studying the ultrafast chiral dynamics and X-ray magnetic circular dichroism (XMCD) due to its ultrashort time-scale (attosecond) and elliptical polarization characteristics. In this work, the interaction between the non-uniform linearly polarized laser field and the Ne atoms is simulated by numerically solving the time-dependent Schrödinger equation. Specifically, the influences of the non-uniformity of the driving field and the orbital angular momentum (OAM) of the initial orbital on high-order harmonics (HHs) and attosecond pulses are revealed. HHs generated by the linearly polarized laser fields with different non-uniformities are calculated. The results indicate that the non-uniformity significantly influences the smoothness and spectral broadening of the harmonic spectra, consequently affecting the properties of the attosecond pulses. Moreover, our findings also reveal that the OAM of the initial orbital plays a significant role in the polarization state of the attosecond pulses. When the OAM is zero (e.g., 1s orbital), the radiated attosecond pulses are linearly polarized, whereas non-zero OAM (e.g., current carrying state 2p orbital) leads to elliptically polarized emission. This study provides a theoretical foundation for generating and controlling elliptically polarized isolated attosecond pulses by using non-uniform linearly polarized laser fields, and offers new possibilities for ultrafast spectroscopy and magnetic material characterization.
      Corresponding author: ZHANG Xiaofan, zhangxiaofan@wit.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11904269, 12174295) and the Natural Science Foundation of Hubei Province, China (Grant No. 2021CFB300).
    [1]

    Brabec T, Krausz F 2000 Rev. Mod. Phys. 72 545Google Scholar

    [2]

    Paul P M, Toma E S, Breger P, Mullot G, Augé F, Balcou Ph, Muller H G, Agostini P 2001 Science 292 1689Google Scholar

    [3]

    Gaumnitz T, Jain A, Pertot Y, Huppert M, Jordan I, Ardana-Lamas F, Wörner H J 2017 Opt. Express 25 27506Google Scholar

    [4]

    Sansone G, Benedetti E, Calegari F, et al. 2006 Science 314 443Google Scholar

    [5]

    Seres J, Yakovlev S V, Seres E, Streli CH, Wobrauschek P, Spielmann C H, Krausz F 2007 Nat. Phys. 3 878Google Scholar

    [6]

    Goulielmakis E, Schultze M, Hofstetter M 2008 Science 320 1614Google Scholar

    [7]

    Mairesse Y, Bohan D A, Frasinski J K, et al. 2003 Science 302 1540Google Scholar

    [8]

    Li J, Ren X, Yin Y, et al. 2017 Nat. Commun. 8 186

    [9]

    Kukk E, Myllynen H, Nagaya K, et al. 2019 Phys. Rev. A 99 023411Google Scholar

    [10]

    Mairesse Y, Higuet J, Dudovich N, et al. 2010 Phys. Rev. Lett. 104 229901Google Scholar

    [11]

    Chen Z J, Wang Y, Morishita T 2019 Phys. Rev. A 100 023405Google Scholar

    [12]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994Google Scholar

    [13]

    Ferré A, Handschin C, Dumergue M, et al. 2015 Nat. Photonics 9 93

    [14]

    Kfir O, Grychto P, Turgut E, et al. 2015 Nat. Photonics 9 99

    [15]

    Sinev I, Richter U F, Toftul I, Glebov N, Koshelev K, Hwang Y, Lancaster G D, Kivshar Y, Altug H 2025 Nat. Commun. 16 6091Google Scholar

    [16]

    Valev K V, Engheta N, Pendry B J 2023 Adv. Mater. 35 e2306073Google Scholar

    [17]

    Shao R, Zhai C, Zhang Y, Sun N, Cao W, Lan P, Lu P 2020 Opt. Express 28 15874Google Scholar

    [18]

    Lambert G, Vodungbo B, Gautier J, et al. 2015 Nat. Commun. 6 6167Google Scholar

    [19]

    Yuan J K, Bandrauk D A 2013 Phys. Rev. Lett. 110 023003Google Scholar

    [20]

    Fleischer A, Kfir O, Diskin T, Sidorenko P, Cohen O 2014 Nat. Photonics 8 543

    [21]

    Medišauskas L, Wragg J, van der Hart H, Yu. Ivanov M 2015 Phys. Rev. Lett. 115 153001Google Scholar

    [22]

    Zhou X, Lock R, Wagner N, Li W, Kapteyn C H, Murnane M M 2009 Phys. Rev. Lett. 102 073902Google Scholar

    [23]

    Niikura H, Dudovich N, Villeneuve M D, Corkum B P 2010 Phys Rev. Lett. 105 053003Google Scholar

    [24]

    Xie X, Scrinzi A, Wickenhauser M, Baltuška A, Barth I, Kitzler M 2008 Phys. Rev. Lett. 101 033901Google Scholar

    [25]

    Weber A, Böning B, Minneker B, Fritzsche S 2021 Phys. Rev. A 104 063118Google Scholar

    [26]

    Liu X, Zhu X, Li L, Li Y, Zhang Q, Lan P, Lu P 2016 Phys. Rev. A 94 033410Google Scholar

    [27]

    Miloševic B D 2015 Phys. Rev. A 92 043827Google Scholar

    [28]

    Mauger F, Bandrauk D A, Uzer T 2016 J. Phys. B 49 10LT01Google Scholar

    [29]

    Hickstein D D, Dollar J F, Grychtol P, et al. 2015 Nat. Photonics 9 743Google Scholar

    [30]

    Dorney M K, Ellis L J, Hernández-García C, et al. 2017 Phys. Rev. Lett. 119 063201Google Scholar

    [31]

    Zhang X, Li L, Zhu X, Liu K, Liu X, Wang D, Lan P, Barth I, Lu P 2018 Phys. Rev. A 98 023418Google Scholar

    [32]

    Le A T, Lucchese R R, Lin C D 2010 Phys. Rev. A 82 023814Google Scholar

    [33]

    Zhang X F, Zhu X S, Liu X, Wang F, Qin M Y, Liao Q, Lu P X 2020 Phys. Rev. A 102 033103Google Scholar

    [34]

    Ou T, Wang F, Yuan H, Yang C, Song J, Liao Q 2025 Opt. Commun. 574 131183Google Scholar

    [35]

    Mandal A, Singh P K 2023 Laser Phys. 33 015301Google Scholar

    [36]

    Ammosov M V, Delone N B, Krainov V P 1986 Sov. Phys. JETP 64 1191

    [37]

    Ding Y, Wang K, Zhang X 2025 Opt. Laser Technol. 184 112561Google Scholar

    [38]

    罗江华 2014 博士学位论文(武汉: 华中科技大学)

    Luo J H 2014 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology

    [39]

    Zhang X F, Zhu X S, Liu X, Wang D, Zhang Q B, Lan P F, Lu P X 2017 Opt. Lett. 42 1027Google Scholar

  • 图 1  (a) 1s轨道概率密度空间分布图; (b) 1s轨道相位空间分布图; (c) 2p轨道概率密度空间分布图; (d) 2p轨道相位空间分布图

    Figure 1.  (a) Probability density space distribution graph of the 1s orbital; (b) phase space distribution diagram of the 1s orbital; (c) probability density space distribution graph of the 2p orbital; (d) phase space distribution diagram of the 2p orbital.

    图 2  不同$ \kappa $值驱动场下1s轨道和2p轨道产生的高次谐波谱 (a) $ \kappa $ = 0, 1s轨道; (b) $ \kappa $ = 0.001, 1s轨道; (c) $ \kappa $ = 0.002, 1s轨道; (d) $ \kappa $ = 0.003, 1s轨道; (e) $ \kappa $ = 0, 2p轨道; (f) $ \kappa $ = 0.001, 2p轨道; (g) $ \kappa $ = 0.002, 2p轨道; (h) $ \kappa $ = 0.003, 2p轨道 (蓝色实线和红色虚线分别表示高次谐波的右、左旋分量)

    Figure 2.  High-order harmonic spectra generated by 1s and 2p orbitals under different $ \kappa $ value of driving fields: (a) $ \kappa $ = 0, 1s orbital; (b) $ \kappa $ = 0.001, 1s orbital; (c) $ \kappa $ = 0.002, 1s orbital; (d) $ \kappa $ = 0.003, 1s orbital; (e) $ \kappa $ = 0, 2p orbital; (f) $ \kappa $ = 0.001, 2p orbital; (g) $ \kappa $ = 0.002, 2p orbital; (h) $ \kappa $ = 0.003, 2p orbital (Blue solid line and the red dashed line, respectively, represent the left- and right-handed circular components of the higher-order harmonics).

    图 3  高次谐波的时频分析图 (a) $ \kappa $ = 0, 1s轨道; (b) $ \kappa $ = 0.001, 1s轨道; (c) $ \kappa $ = 0.002, 1s轨道; (d) $ \kappa $ = 0.003, 1s轨道; (e) $ \kappa $ = 0, 2p轨道; (f) $ \kappa $ = 0.001, 2p轨道; (g) $ \kappa $ = 0.002, 2p轨道; (h) $ \kappa $ = 0.003, 2p轨道

    Figure 3.  Time-frequency analysis diagram of high-order harmonics: (a) $ \kappa $ = 0, 1s orbital; (b) $ \kappa $ = 0.001, 1s orbital; (c) $ \kappa $ = 0.002, 1s orbital; (d) $ \kappa $ = 0.003, 1s orbital; (e) $ \kappa $ = 0, 2p orbital; (f) $ \kappa $ = 0.001, 2p orbital; (g) $ \kappa $ = 0.002, 2p orbital; (h) $ \kappa $ = 0.003, 2p orbital.

    图 4  高次谐波椭偏率 (a) $ \kappa $ = 0, 1s轨道; (b) $ \kappa $ = 0.001, 1s轨道; (c) $ \kappa $ = 0.002, 1s轨道; (d) $ \kappa $ = 0.003, 1s轨道; (e) $ \kappa $ = 0, 2p轨道; (f) $ \kappa $ = 0.001, 2p轨道; (g) $ \kappa $ = 0.002, 2p轨道; (h) $ \kappa $ = 0.003, 2p轨道

    Figure 4.  Ellipticity of high harmonics: (a) $ \kappa $ = 0, 1s orbital; (b) $ \kappa $ = 0.001, 1s orbital; (c) $ \kappa $ = 0.002, 1s orbital; (d) $ \kappa $ = 0.003, 1s orbital; (e) $ \kappa $ = 0, 2p orbital; (f) $ \kappa $ = 0.001, 2p orbital; (g) $ \kappa $ = 0.002, 2p orbital; (h) $ \kappa $ = 0.003, 2p orbital.

    图 5  高次谐波的时频分析图 (a) $ \kappa $ = 0.001, 1s轨道x分量; (b) $ \kappa $ = 0.001, 2p轨道x分量; (c) $ \kappa $ = 0.001, 1s轨道y分量; (d) $ \kappa $ = 0.001, 2p轨道y分量

    Figure 5.  Time-frequency analysis diagram of high-order harmonics: (a) $ \kappa $ = 0.001, x component of 1s orbital; (b) $ \kappa $ = 0.001, x component of 2p orbital; (c) $ \kappa $ = 0.001, y component of 1s orbital; (d) $ \kappa $ = 0.001, y component of 2p orbital.

    图 6  阿秒脉冲时域包络 (a) $ \kappa $ = 0, 1s轨道; (b) $ \kappa $ = 0.001, 1s轨道; (c) $ \kappa $ = 0.002, 1s轨道; (d) $ \kappa $ = 0.003, 1s轨道; (e) $ \kappa $ = 0, 2p轨道; (f) $ \kappa $ = 0.001, 2p轨道; (g) $ \kappa $ = 0.002, 2p轨道; (h) $ \kappa $ = 0.003, 2p轨道

    Figure 6.  Time-domain envelope of attosecond pulses: (a) $ \kappa $ = 0, 1s orbital; (b) $ \kappa $ = 0.001, 1s orbital; (c) $ \kappa $ = 0.002, 1s orbital; (d) $ \kappa $ = 0.003, 1s orbital; (e) $ \kappa $ = 0, 2p orbital; (f) $ \kappa $ = 0.001, 2p orbital; (g) $ \kappa $ = 0.002, 2p orbital; (h) $ \kappa $ = 0.003, 2p orbital

    图 7  阿秒脉冲时域电场形式 (a) $ \kappa $ = 0, 1s轨道; (b) $ \kappa $ = 0.001, 1s轨道; (c) $ \kappa $ = 0.002, 1s轨道; (d) $ \kappa $ = 0.003, 1s轨道; (e) $ \kappa $ = 0, 2p轨道; (f) $ \kappa $ = 0.001, 2p轨道; (g) $ \kappa $ = 0.002, 2p轨道; (h) $ \kappa $ = 0.003, 2p轨道

    Figure 7.  Time-domain electric field forms of attosecond pulses: (a) $ \kappa $ = 0, 1s orbital; (b) $ \kappa $ = 0.001, 1s orbital; (c) $ \kappa $ = 0.002, 1s orbital; (d) $ \kappa $ = 0.003, 1s orbital; (e) $ \kappa $ = 0, 2p orbital; (f) $ \kappa $ = 0.001, 2p orbital; (g) $ \kappa $ = 0.002, 2p orbital; (h) $ \kappa $ = 0.003, 2p orbital.

    图 8  (a)—(c) 2p-轨道高次谐波截止区能量、合成的阿秒脉冲脉宽以及椭偏率随驱动激光场波长的变化; (d)—(f) 驱动激光场光周期为$ {2 T}_{0} $时的高次谐波谱、合成的阿秒脉冲以及时域电场(红色实线表示光周期为$ {3 T}_{0} $的结果), 合成的高次谐波谱段均为35阶—50阶. 其余参数与图2(h)相同

    Figure 8.  (a)–(c) Cut-off energy of high harmonic spectra of the 2p- orbital, pulse duration and ellipticity versus the wavelength; (d)–(f) the high harmonic spectra, attosecond pulses and time-domain electric field for the driving field with $ {2 T}_{0} $ (The red solid lines represent the results for the driving field with $ {3 T}_{0} $). The attosecond pulses synthesized by the harmonics of 35th–40th. Other parameters are the same as those in Fig. 2(h).

    Baidu
  • [1]

    Brabec T, Krausz F 2000 Rev. Mod. Phys. 72 545Google Scholar

    [2]

    Paul P M, Toma E S, Breger P, Mullot G, Augé F, Balcou Ph, Muller H G, Agostini P 2001 Science 292 1689Google Scholar

    [3]

    Gaumnitz T, Jain A, Pertot Y, Huppert M, Jordan I, Ardana-Lamas F, Wörner H J 2017 Opt. Express 25 27506Google Scholar

    [4]

    Sansone G, Benedetti E, Calegari F, et al. 2006 Science 314 443Google Scholar

    [5]

    Seres J, Yakovlev S V, Seres E, Streli CH, Wobrauschek P, Spielmann C H, Krausz F 2007 Nat. Phys. 3 878Google Scholar

    [6]

    Goulielmakis E, Schultze M, Hofstetter M 2008 Science 320 1614Google Scholar

    [7]

    Mairesse Y, Bohan D A, Frasinski J K, et al. 2003 Science 302 1540Google Scholar

    [8]

    Li J, Ren X, Yin Y, et al. 2017 Nat. Commun. 8 186

    [9]

    Kukk E, Myllynen H, Nagaya K, et al. 2019 Phys. Rev. A 99 023411Google Scholar

    [10]

    Mairesse Y, Higuet J, Dudovich N, et al. 2010 Phys. Rev. Lett. 104 229901Google Scholar

    [11]

    Chen Z J, Wang Y, Morishita T 2019 Phys. Rev. A 100 023405Google Scholar

    [12]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994Google Scholar

    [13]

    Ferré A, Handschin C, Dumergue M, et al. 2015 Nat. Photonics 9 93

    [14]

    Kfir O, Grychto P, Turgut E, et al. 2015 Nat. Photonics 9 99

    [15]

    Sinev I, Richter U F, Toftul I, Glebov N, Koshelev K, Hwang Y, Lancaster G D, Kivshar Y, Altug H 2025 Nat. Commun. 16 6091Google Scholar

    [16]

    Valev K V, Engheta N, Pendry B J 2023 Adv. Mater. 35 e2306073Google Scholar

    [17]

    Shao R, Zhai C, Zhang Y, Sun N, Cao W, Lan P, Lu P 2020 Opt. Express 28 15874Google Scholar

    [18]

    Lambert G, Vodungbo B, Gautier J, et al. 2015 Nat. Commun. 6 6167Google Scholar

    [19]

    Yuan J K, Bandrauk D A 2013 Phys. Rev. Lett. 110 023003Google Scholar

    [20]

    Fleischer A, Kfir O, Diskin T, Sidorenko P, Cohen O 2014 Nat. Photonics 8 543

    [21]

    Medišauskas L, Wragg J, van der Hart H, Yu. Ivanov M 2015 Phys. Rev. Lett. 115 153001Google Scholar

    [22]

    Zhou X, Lock R, Wagner N, Li W, Kapteyn C H, Murnane M M 2009 Phys. Rev. Lett. 102 073902Google Scholar

    [23]

    Niikura H, Dudovich N, Villeneuve M D, Corkum B P 2010 Phys Rev. Lett. 105 053003Google Scholar

    [24]

    Xie X, Scrinzi A, Wickenhauser M, Baltuška A, Barth I, Kitzler M 2008 Phys. Rev. Lett. 101 033901Google Scholar

    [25]

    Weber A, Böning B, Minneker B, Fritzsche S 2021 Phys. Rev. A 104 063118Google Scholar

    [26]

    Liu X, Zhu X, Li L, Li Y, Zhang Q, Lan P, Lu P 2016 Phys. Rev. A 94 033410Google Scholar

    [27]

    Miloševic B D 2015 Phys. Rev. A 92 043827Google Scholar

    [28]

    Mauger F, Bandrauk D A, Uzer T 2016 J. Phys. B 49 10LT01Google Scholar

    [29]

    Hickstein D D, Dollar J F, Grychtol P, et al. 2015 Nat. Photonics 9 743Google Scholar

    [30]

    Dorney M K, Ellis L J, Hernández-García C, et al. 2017 Phys. Rev. Lett. 119 063201Google Scholar

    [31]

    Zhang X, Li L, Zhu X, Liu K, Liu X, Wang D, Lan P, Barth I, Lu P 2018 Phys. Rev. A 98 023418Google Scholar

    [32]

    Le A T, Lucchese R R, Lin C D 2010 Phys. Rev. A 82 023814Google Scholar

    [33]

    Zhang X F, Zhu X S, Liu X, Wang F, Qin M Y, Liao Q, Lu P X 2020 Phys. Rev. A 102 033103Google Scholar

    [34]

    Ou T, Wang F, Yuan H, Yang C, Song J, Liao Q 2025 Opt. Commun. 574 131183Google Scholar

    [35]

    Mandal A, Singh P K 2023 Laser Phys. 33 015301Google Scholar

    [36]

    Ammosov M V, Delone N B, Krainov V P 1986 Sov. Phys. JETP 64 1191

    [37]

    Ding Y, Wang K, Zhang X 2025 Opt. Laser Technol. 184 112561Google Scholar

    [38]

    罗江华 2014 博士学位论文(武汉: 华中科技大学)

    Luo J H 2014 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology

    [39]

    Zhang X F, Zhu X S, Liu X, Wang D, Zhang Q B, Lan P F, Lu P X 2017 Opt. Lett. 42 1027Google Scholar

  • [1] DENG Yimin, ZHANG Yu, LU Peixiang, CAO Wei. Apparatus for transient absorption spectroscopy based on water-window high-order harmonic attosecond light sources. Acta Physica Sinica, 2025, 74(15): 153201. doi: 10.7498/aps.74.20250550
    [2] Yu Shu-Juan, Liu Zhu-Qin, Li Yan-Peng. Ellipticity properties of symmetric molecules $ {\text{H}}_{\text{2}}^ + $ in strong and short-wavelength laser fields. Acta Physica Sinica, 2023, 72(4): 043101. doi: 10.7498/aps.72.20221946
    [3] Du Jin-Xu, Wang Guo-Li, Li Xiao-Yong, Zhou Xiao-Xin. Generation of isolated attosecond pulses from atoms driven by optimized two near-infrared pulses and their second harmonic fields. Acta Physica Sinica, 2022, 71(23): 233207. doi: 10.7498/aps.71.20221375
    [4] Han Lin, Miao Shu-Li, Li Peng-Cheng. Theoretical study of high-order harmonics and single ultrashort attosecond pulse generated by optimized combination of laser field. Acta Physica Sinica, 2022, 71(23): 233204. doi: 10.7498/aps.71.20221298
    [5] Xu Xin-Rong, Zhong Cong-Lin, Zhang Yi, Liu Feng, Wang Shao-Yi, Tan Fang, Zhang Yu-Xue, Zhou Wei-Min, Qiao Bin. Research progress of high-order harmonics and attosecond radiation driven by interaction between intense lasers and plasma. Acta Physica Sinica, 2021, 70(8): 084206. doi: 10.7498/aps.70.20210339
    [6] Liu Yang-Yang, Zhao Kun, He Peng, Jiang Yu-Jiao, Huang Hang-Dong, Teng Hao, Wei Zhi-Yi. High harmonic generation experiments based on solid-state supercontinuum. Acta Physica Sinica, 2017, 66(13): 134207. doi: 10.7498/aps.66.134207
    [7] Luo Xiang-Yi, Liu Hai-Feng, Ben Shuai, Liu Xue-Shen. Enhancement of high-order harmonic generation from H2+ in near plasmon-enhanced laser field. Acta Physica Sinica, 2016, 65(12): 123201. doi: 10.7498/aps.65.123201
    [8] Li Gui-Hua, Xie Hong-Qiang, Yao Jin-Ping, Chu Wei, Cheng Ya, Liu Xiao-Jun, Chen Jing, Xie Xin-Hua. Signature of multi-channel interference in high-order harmonic generation from N2 driven by intense mid-infrared pulses. Acta Physica Sinica, 2016, 65(22): 224208. doi: 10.7498/aps.65.224208
    [9] Luo Xiang-Yi, Ben Shuai, Ge Xin-Lei, Wang Qun, Guo Jing, Liu Xue-Shen. High-order harmonics and attosecond pulse generation of a He+ ion by a chirped two-color inhomogeneous laser field. Acta Physica Sinica, 2015, 64(19): 193201. doi: 10.7498/aps.64.193201
    [10] Li Xiao-Gang, Li Fang, He Zhi-Cong. Quantum path interferences of high-order harmonic generation in two-color Gaussian beams. Acta Physica Sinica, 2013, 62(8): 087201. doi: 10.7498/aps.62.087201
    [11] Lu Fa-Ming, Xia Yuan-Qin, Zhang Sheng, Chen De-Ying. Investigation of tunable coherent XUV light source by high harmonics generation using intense femtosecond laser pulses in Ne. Acta Physica Sinica, 2013, 62(2): 024212. doi: 10.7498/aps.62.024212
    [12] Cao Wei-Jun, Cheng Chun-Zhi, Zhou Xiao-Xin. The relationship between conversion efficiency of high-order harmonic generation from atom and wavelength in two-color combined fields. Acta Physica Sinica, 2011, 60(5): 054210. doi: 10.7498/aps.60.054210
    [13] Cheng Chun-Zhi, Zhou Xiao-Xin, Li Peng-Cheng. The wavelength dependence of high-order harmonic generationand attosecond pulses from atom in infrared laser field. Acta Physica Sinica, 2011, 60(3): 033203. doi: 10.7498/aps.60.033203
    [14] Cui Lei, Wang Xiao-Juan, Wang Fan, Zeng Xiang-Hua. Effect of laser polarization direction on high order harmonic generation of oxygen molecule——A simulation via TDDFT. Acta Physica Sinica, 2010, 59(1): 317-321. doi: 10.7498/aps.59.317
    [15] Li Hui-Shan, Li Peng-Cheng, Zhou Xiao-Xin. Role of potential function in high order harmonic generation of model hydrogen atoms in intense laser field. Acta Physica Sinica, 2009, 58(11): 7633-7639. doi: 10.7498/aps.58.7633
    [16] Gu Bin, Cui Lei, Zeng Xiang-Hua, Zhang Feng-Shou. High-order harmonic generation of hydrogen molecule irradiated by ultra-strong femto-second laser pulse——a simulation via TDDFT. Acta Physica Sinica, 2006, 55(6): 2972-2976. doi: 10.7498/aps.55.2972
    [17] Cui Lei, Gu Bin, Teng Yu-Yong, Hu Yong-Jin, Zhao Jiang, Zeng Xiang-Hua. Effect of different laser polarization direction on high order harmonic generation of nitrogen molecule——A simulation via TDDFT. Acta Physica Sinica, 2006, 55(9): 4691-4694. doi: 10.7498/aps.55.4691
    [18] Zeng Zhi-Nan, Li Ru-Xin, Xie Xin-Hua, Xu Zhi-Zhan. High-order harmonic attosecond pulses driven by a two-pulse laser. Acta Physica Sinica, 2004, 53(7): 2316-2319. doi: 10.7498/aps.53.2316
    [19] Zhang Qiu-Ju, Sheng Zheng-Ming, Zhang Jie. Redshift of harmonics by laser interaction with solid target. Acta Physica Sinica, 2004, 53(7): 2180-2183. doi: 10.7498/aps.53.2180
    [20] Wang Da-Wei, Liu Ting-Ting, Yang Hong, Jiang Hong-Bin, Gong Qi-Huang. . Acta Physica Sinica, 2002, 51(9): 2034-2037. doi: 10.7498/aps.51.2034
Metrics
  • Abstract views:  646
  • PDF Downloads:  22
  • Cited By: 0
Publishing process
  • Received Date:  17 July 2025
  • Accepted Date:  10 August 2025
  • Available Online:  26 August 2025
  • Published Online:  05 October 2025
  • /

    返回文章
    返回
    Baidu
    map