-
Studying low-temperature atomic and molecular reaction dynamics in quantum state selection is one of the key research methods for exploring the collision reaction mechanisms and revealing quantum effects in scattering processes. The merging beam collision experimental method is a powerful approach to achieving cold collisions of mK collision energy, by deflecting one reactant beam to collide with another reactant beam in a collinear manner. In this work, based on the Zeeman effect, the interaction between atomic magnetic moments and a magnetic field, a permanent-magnet “magnetic guide” system is developed to deflect metastable helium atom beams, with the aim of achieving collinear transport of neutral helium atoms and molecules in cold merged-beams collisions. Metastable helium atoms He(23S1) are produced through RF discharge. Utilizing this “magnetic guide”, the quantum-state-resolved neutral helium atoms (He(23S1), $ {M_J} = + 1 $) are prepared. Helium flux measurements demonstrate about 10°deflection of metastable helium atoms with a flux exceeding 106 atoms/s, accompanied by successful preparation of $ {M_J} = + 1 $ magnetic sublevel helium atoms. Furthermore, by combining the magnetic field measurements and magnetic force calculations for 23S1 metastable helium atom, the simulated trajectories propagating through the magnetic guide are analyzed. This work lays an experimental foundation for quantum-state-resolved cold collisions between excited-state helium and molecules below 1 K, advancing the understanding of cold reaction mechanisms governing the evolution of interstellar media and promoting chemical reaction control. The developed magnetic guidance technology in this study also has important application prospects in fields such as atomic velocity filtering and cold atom transport. In the future, optical pumping experimental methods will be employed to pump 23S1 helium atoms into the $ {M_J} = + 1 $ magnetic sublevel helium atoms, enhancing the population of single quantum state. Moreover, two-dimensional magneto-optical traps and optical molasses will be implemented to optimize beam, which is expected to further improve the beam flux of helium atoms. -
Keywords:
- metastable helium atoms /
- cold collisions /
- merged-beams
-
图 4 (a) 磁组件的一维径向磁场曲线图, 其中红色空心圆点为有限元模拟结果, 蓝色和黑色曲线为实验测量的磁场分布曲线; (b) 磁组件的径向磁场梯度分布
Figure 4. (a) Radial magnetic field of the magnetic assembly, where red open circles denote the simulation results, and blue/black curves represent measured magnetic field; (b) radial magnetic field gradient of the magnetic assembly.
-
[1] Herbst E, Yates J T 2013 Chem. Rev. 113 8707
Google Scholar
[2] Roueff E, Lique F 2013 Chem. Rev. 113 8906
Google Scholar
[3] Gerlich D, Jusko P, Roučka Š, Zymak I, Plašil R, Glosík J 2012 J. Astrophys. 749 22
Google Scholar
[4] Stuhl B K, Hummon M T, Ye J 2014 Annu. Rev. Phys. Chem. 65 501
Google Scholar
[5] Perreault W E, Mukherjee N, Zare R N 2017 Science 358 356
Google Scholar
[6] Amarasinghe C, Suits A G 2017 J. Phys. Chem. Lett. 8 5153
Google Scholar
[7] Ni K K, Ospelkaus S, Wang D, Quéméner G, Neyenhuis B, Miranda M H G De, Bohn J L, Ye J, Jin D S 2010 Nature 464 1324
Google Scholar
[8] Karman T, Tomza M, Pérez-Ríos J 2024 Nat. Phys. 20 722
Google Scholar
[9] Lavert-Ofir E, Shagam Y, Henson A B, Gersten S, Kłos J, Żuchowski P S, Narevicius J, Narevicius E 2014 Nat. Chem. 6 332
Google Scholar
[10] Yang T, Huang L, Xiao Ch, Chen J, Wang T, Dai D, Lique F, Alexander M H, Sun Zh, Zhang D H, Yang X, Neumark D M 2019 Nat. Chem. 11 744
Google Scholar
[11] Yang X, Zhang D H 2008 Acc. Chem. Res. 41 981
Google Scholar
[12] 杨威, 孙大立, 周林, 王谨, 詹明生 2014 63 153701
Google Scholar
Yang W, Sun D L, Zhou L, Wang J, Zhan M Sh 2014 Acta Phys. Sin. 63 153701
Google Scholar
[13] Bethlem H L, Berden G, Meijer G 1999 Phys. Rev. Lett. 83 1558
Google Scholar
[14] Hutzler N R, Lu Hsin-I, Doyle J M 2012 Chem. Rev. 112 4803
Google Scholar
[15] Lemeshko M, Krems R V, Doyle J M, Kais S 2013 Mol. Phys. 111 1648
Google Scholar
[16] Egorov D, Lahaye T, Schöllkopf W, Friedrich B, Doyle J M, 2002 Phys. Rev. A 66 043401
Google Scholar
[17] Jongh T de, Besemer M, Shuai Q, Karman T, van der Avoird A, Groenenboom G C, van de Meerakker S Y T 2020 Science 6494 626
[18] Qiu M, Ren Z, Che L, Dai D, Harich S A, Wang X, Yang X, Xu C, Xie D, Gustafsson M, Skodje R T, Sun Z, Zhang D H 2006 Science 311 1440
Google Scholar
[19] Yang T, Yang X 2006 Science 368 582
[20] Henson A B, Gersten S, Shagam Y, Narevicius J, Narevicius E 2012 Science 338 234
Google Scholar
[21] Shagam Y, Narevicius E 2013 J. Phys. Chem. C 117 22454
Google Scholar
[22] Klein A, Shagam Y, Skomorowski W, Zuchowski P S, Pawlak M, Janssen L M C, Moiseyev N, van de Meerakker S Y T, van der Avoird A, Koch C P, Narevicius E 2017 Nat. Phys. 13 35
Google Scholar
[23] Shagam Y, Klein A, Skomorowski W, Yun R, Averbukh V, Koch C P, Narevicius E 2015 Nat. Chem. 7 921
Google Scholar
[24] Paliwal P, Deb N, Reich D M, van der Avoird Ad, Koch C P, Narevicius E 2021 Nat. Chem. 13 94
[25] Jankunas J, Bertsche B, Osterwalder A 2014 J. Phys. Chem. A 118 3875
Google Scholar
[26] Gordon S D S, Omiste J J, Zou J, Tanteri S, Brumer P, Osterwalder A 2018 Nat. Chem. 10 1190
Google Scholar
[27] Harada Y, Masuda S, Ozaki H 1997 Chem. Rev. 97 1897
Google Scholar
[28] Kishimoto N, Oda T, Ohno K 2024 J. Electron. Spectrosc. Relat. Phenom. 137 319
[29] Yamakita Y, Ohno K 2009 J. Phys. Chem. A 113 10779
[30] Henson B M, Ross J A, Thomas K F, Kuhn C N, Shin D K, Hodgman S S, Zhang Y H, Tang L Y, G. Drake W F, Bondy A T, Truscott A G, Baldwin K G H 2022 Science 376 199
Google Scholar
[31] Chen J J, Sun Y R, Wen J L, Hu S M 2020 Phys. Rev. A 101 053824
Google Scholar
[32] Even U 2015 EPJ Tech. Instrum. 2 17
Google Scholar
[33] 孙羽, 冯高平, 程存峰, 涂乐义, 潘虎, 杨国民, 胡水明 2012 61 170601
Google Scholar
Sun Y, Feng G P, Cheng C F, Tu L Y, Pan H, Yang G M, Hu S M 2012 Acta Phys. Sin. 61 170601
Google Scholar
[34] Cheng C F, Jiang W, Yang G M, Sun Y R, Pan H, Gao Y, Liu A W, Hu S M 2010 Rev. Sci. Instrum. 81 123106
Google Scholar
[35] 陈娇娇, 孙羽, 温金录, 胡水明 2021 70 133201
Google Scholar
Chen J J, Sun Y, Wen J L, Hu S M 2021 Acta Phys. Sin. 70 133201
Google Scholar
Metrics
- Abstract views: 315
- PDF Downloads: 16
- Cited By: 0