Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Strain measurement of ultra-narrow linewidth π-phase-shifted fiber Bragg grating based on frequency-stabilized laser

YU Bo YIN Zhenqiang DING Weijie LIU Weixin LI Jing

Citation:

Strain measurement of ultra-narrow linewidth π-phase-shifted fiber Bragg grating based on frequency-stabilized laser

YU Bo, YIN Zhenqiang, DING Weijie, LIU Weixin, LI Jing
cstr: 32037.14.aps.74.20250701
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The fiber Bragg grating has the characteristics of anti-electromagnetic interference, electrically passive operation, multi-point sensing, corrosion resistance, and compact size. An ultra-narrow linewidth transmission peak can be formed by introducing a π phase shift at the center of uniform fiber Bragg grating. But this π phase-shifted fiber Bragg grating (PSFBG) with an ultra-narrow linewidth is very sensitive to the input optical intensity. The photothermal effect generated by the input light inside the grating will cause the frequency shift, which will degrade the measurement precision of grating. At the same time, the frequency drift of the laser itself will also increase the measurement error. In this paper, a high-precision strain measurement method is proposed by using the PSFBG with an ultra-narrow linewidth based on the frequency-stabilized laser. The incident laser is attenuated to a single-photon level to eliminate the photothermal effect in the PSFBG. The laser frequency is stabilized to the PSFBG with an ultra-narrow linewidth of 38 MHz by using the single-photon modulation technology. The influence of low-frequency flicker noise is eliminated through 9-kHz high-frequency modulation. The filter bandwidth of lock-in amplifier is 312.5 Hz with the integration time and filter slope of 300 μs and 18 dB, respectively. The signal-to-noise ratio of error signal from the lock-in amplifier is 34. By tuning the resonant cavity length of the laser with the error signal, the output laser frequency is stabilized to the Bragg frequency of the PSFBG with an ultra-narrow linewidth of 38 MHz. The laser frequency fluctuation is limited to 4 MHz within 1000 s. The response sensitivity of Bragg wavelength to external strain in a range of 0 to 30 με is 1.2 pm/με, with a standard error of 0.023 pm/με, and the linear fitting correlation coefficient is R2 = 0.997. Due to the random drift of Bragg wavelength, caused by the environment temperature fluctuations, the corresponding strain measurement precision is 0.05 με. The high-precision strain measurement by using the PSFBG with an ultra-narrow linewidth based on the frequency-stabilized laser is achieved, which will play an important role in the field of aerospace, civil engineering, energy engineering, etc.
      Corresponding author: YU Bo, yb@xztu.edu.cn
    • Funds: Project supported by the Fundamental Research Program of Shanxi Province, China (Grant No. 202403021211084) and the Science & Technology Program of Xinzhou City, China (Grant No. 20240509).
    [1]

    Sun Q Q, Zhang M Z, Zhao S S, Ji L T, Su J, Xu J, Yang B, Wu C 2025 Opt. Lasers Eng. 194 109147Google Scholar

    [2]

    Kok S P, Go Y L, Wang X, Wong M L D 2024 IEEE Sensors J. 24 29485Google Scholar

    [3]

    Abdulraheem M I, Xiong Y, Zhang W, Chen H, Zhang H, Hu J 2024 Int. J. Precis. Eng. Manuf. 25 1499Google Scholar

    [4]

    Xu S Y, Li X Z, Wang T Y, Wang X J, Liu H 2023 Opt. Eng. 62 010902Google Scholar

    [5]

    Hu X Y, Xu Y, Zhang H X, Xie J H, Niu D Q, Zhao Z, Qu X 2023 IEEE Sensors J. 23 11374Google Scholar

    [6]

    Zhai H Z, Wu Q, Xiong K, Wang R 2019 IEEE Photon. Technol. Lett. 31 1335Google Scholar

    [7]

    Pashaie R, Vahedi M 2022 Opt. Quant. Electron. 54 85Google Scholar

    [8]

    Xiang R, Chen C X, Kong B, Hong Q S, Lu L 2022 Optics and Photonics J. 12 269Google Scholar

    [9]

    Liu T, Li Y W, Dai X Y, Gan W B, Wang X S, Dai S X 2023 J. Lightw. Technol. 41 5169Google Scholar

    [10]

    Cheng H, Wang L, Wang J 2023 Opt. Fiber Technol. 79 103363Google Scholar

    [11]

    Tian T, Zhou X, Wang S H, Luo Y, Li X G, He N H, Ma Y L, Liu W F, Shi R B, Ma G N 2022 Energies 15 5849Google Scholar

    [12]

    Zhang F, Buchfellner F, Hu W B, Ao W X, Bian Q, Roths J, Yang M H 2025 Photon. Sens. 15 250204Google Scholar

    [13]

    Daxini S, Aydin D, Giron A, Barnes J, Gu X J, Loock H P 2025 Opt. Express 33 6039Google Scholar

    [14]

    Nadeem M D, Raghuwanshi S K, Kumar S 2022 IEEE Sensors J. 22 7463Google Scholar

    [15]

    Ji L T, Li G, Zhang C, Su J, Wu C 2021 IEEE Sensors J. 21 27482Google Scholar

    [16]

    Srivastava D, Das B 2020 Sens. Actuators A Phys. 315 112215Google Scholar

    [17]

    Miao S J, Zhang W T, Song Y, Huang W Z 2020 Opt. Express 28 12699Google Scholar

    [18]

    Man W Q, Zhang C Y, Peng J, He Q P 2025 J. Optoelectron. Adv. Mater. 27 107

    [19]

    Chow J H, Sheard B S, Mcclelland D E, Gray M B, Littler I C M 2005 Opt. Lett. 30 708Google Scholar

    [20]

    Painchaud Y, Aubé M, Brochu G, Picard M J 2010 Proc. Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, OSA Technical Digest Paper BTuC3

    [21]

    Ding M, Chen D J, Fang Z J, Wang D, Zhang X, Wei F, Yang F, Ying K, Cai H W 2016 Opt. Express 24 25370Google Scholar

    [22]

    于波, 景明勇, 胡建勇, 张国峰, 肖连团, 贾锁堂 2016 激光与光电子学进展 53 080604Google Scholar

    Yu B, Jing M Y, Hu J Y, Zhang G F, Xiao L T, Jia S T 2016 Laser Optoelectron. Prog. 53 080604Google Scholar

  • 图 1  基于稳频激光的超窄线宽π相移光纤布拉格光栅应变测量实验装置图(虚线代表光信号, 实线代表电信号). Iso, 隔离器; Att, 衰减器; PSFBG, π相移光纤布拉格光栅; PZT, 压电换能器; SPD, 单光子探测器; TEC, 温控器; +, 加法器; LIA, 锁相放大器; FG, 信号发生器; HVA, 高压放大器

    Figure 1.  Experimental setup for strain measurement by using π-phase-shifted fiber Bragg grating with an ultra-narrow linewidth based on frequency-stabilized laser (dashed lines for the light signal, solid lines for the electrical signal). Iso, isolator; Att, attenuator; PSFBG, π-phase-shifted fiber Bragg grating; PZT, piezoelectric transducer; SPD, single-photon detector; TEC, temperature controller; +, adder; LIA, lock-in amplifier; FG, function generator; HVA, high-voltage amplifier.

    图 2  (a) π相移光纤布拉格光栅透射光谱; (b) 慢轴透射峰

    Figure 2.  (a) The π-phase-shifted fiber Bragg grating transmission spectrum; (b) transmission peak for slow axis.

    图 3  激光频率未锁定与锁定的测量结果, 插图为误差信号

    Figure 3.  Measurement results when laser frequency is unlocked and locked, and inset is error signal.

    图 4  布拉格波长随外部应力变化的测量结果

    Figure 4.  Measurement results of Bragg wavelength variation with external strain.

    Baidu
  • [1]

    Sun Q Q, Zhang M Z, Zhao S S, Ji L T, Su J, Xu J, Yang B, Wu C 2025 Opt. Lasers Eng. 194 109147Google Scholar

    [2]

    Kok S P, Go Y L, Wang X, Wong M L D 2024 IEEE Sensors J. 24 29485Google Scholar

    [3]

    Abdulraheem M I, Xiong Y, Zhang W, Chen H, Zhang H, Hu J 2024 Int. J. Precis. Eng. Manuf. 25 1499Google Scholar

    [4]

    Xu S Y, Li X Z, Wang T Y, Wang X J, Liu H 2023 Opt. Eng. 62 010902Google Scholar

    [5]

    Hu X Y, Xu Y, Zhang H X, Xie J H, Niu D Q, Zhao Z, Qu X 2023 IEEE Sensors J. 23 11374Google Scholar

    [6]

    Zhai H Z, Wu Q, Xiong K, Wang R 2019 IEEE Photon. Technol. Lett. 31 1335Google Scholar

    [7]

    Pashaie R, Vahedi M 2022 Opt. Quant. Electron. 54 85Google Scholar

    [8]

    Xiang R, Chen C X, Kong B, Hong Q S, Lu L 2022 Optics and Photonics J. 12 269Google Scholar

    [9]

    Liu T, Li Y W, Dai X Y, Gan W B, Wang X S, Dai S X 2023 J. Lightw. Technol. 41 5169Google Scholar

    [10]

    Cheng H, Wang L, Wang J 2023 Opt. Fiber Technol. 79 103363Google Scholar

    [11]

    Tian T, Zhou X, Wang S H, Luo Y, Li X G, He N H, Ma Y L, Liu W F, Shi R B, Ma G N 2022 Energies 15 5849Google Scholar

    [12]

    Zhang F, Buchfellner F, Hu W B, Ao W X, Bian Q, Roths J, Yang M H 2025 Photon. Sens. 15 250204Google Scholar

    [13]

    Daxini S, Aydin D, Giron A, Barnes J, Gu X J, Loock H P 2025 Opt. Express 33 6039Google Scholar

    [14]

    Nadeem M D, Raghuwanshi S K, Kumar S 2022 IEEE Sensors J. 22 7463Google Scholar

    [15]

    Ji L T, Li G, Zhang C, Su J, Wu C 2021 IEEE Sensors J. 21 27482Google Scholar

    [16]

    Srivastava D, Das B 2020 Sens. Actuators A Phys. 315 112215Google Scholar

    [17]

    Miao S J, Zhang W T, Song Y, Huang W Z 2020 Opt. Express 28 12699Google Scholar

    [18]

    Man W Q, Zhang C Y, Peng J, He Q P 2025 J. Optoelectron. Adv. Mater. 27 107

    [19]

    Chow J H, Sheard B S, Mcclelland D E, Gray M B, Littler I C M 2005 Opt. Lett. 30 708Google Scholar

    [20]

    Painchaud Y, Aubé M, Brochu G, Picard M J 2010 Proc. Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, OSA Technical Digest Paper BTuC3

    [21]

    Ding M, Chen D J, Fang Z J, Wang D, Zhang X, Wei F, Yang F, Ying K, Cai H W 2016 Opt. Express 24 25370Google Scholar

    [22]

    于波, 景明勇, 胡建勇, 张国峰, 肖连团, 贾锁堂 2016 激光与光电子学进展 53 080604Google Scholar

    Yu B, Jing M Y, Hu J Y, Zhang G F, Xiao L T, Jia S T 2016 Laser Optoelectron. Prog. 53 080604Google Scholar

Metrics
  • Abstract views:  1235
  • PDF Downloads:  35
  • Cited By: 0
Publishing process
  • Received Date:  30 May 2025
  • Accepted Date:  11 July 2025
  • Available Online:  11 August 2025
  • Published Online:  05 October 2025
  • /

    返回文章
    返回
    Baidu
    map