Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Structural evolution of siloxane-epoxy crosslinked networks and their high-temperature electrical properties

YIN Kai LI Jing TENG Chenyuan HU Yishuang CHEN Xiangrong ZHA Junwei

Citation:

Structural evolution of siloxane-epoxy crosslinked networks and their high-temperature electrical properties

YIN Kai, LI Jing, TENG Chenyuan, HU Yishuang, CHEN Xiangrong, ZHA Junwei
cstr: 32037.14.aps.74.20250654
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The ongoing trend toward high-power and miniaturized electronic devices has raised increasingly stringent requirements for the high-temperature electrical properties of epoxy encapsulating materials. In this study, epoxy-terminated phenyltrisiloxane (ETS) is used as a functional monomer to incorporate Si-O bonds into bisphenol-A epoxy resin through crosslinking reactions, thereby systematically investigating the influence and modulation effects of ETS on the structure and high-temperature electrical characteristics of epoxy composites. Gel content measurements indicate that as the concentration of ETS increases, the gel content of the epoxy resin composite decreases accordingly, suggesting that higher ETS content reduces the crosslinking density of the epoxy network. Experimental test results demonstrate that compared with pure epoxy resin, the composite with 2.5% ETS exhibits superior performance: the glass transition temperature increases to 129 ℃ with thermal decomposition temperature rising, while showing optimal high-temperature (70 ℃) electrical properties including significantly reduced conductivity, markedly suppressed space charge accumulation, deepened trap energy level (from 0.834 eV to 0.847 eV), reduced dielectric loss (0.005 at 50 Hz), and improved breakdown strength (74.2 kV/mm). Notably, as the ETS content increases, the electrical properties of epoxy composite follow a non-monotonic concentration dependence, initially enhancing then deteriorating, exhibiting evolutionary characteristics similar to those of nanoparticle-modified systems. Herein, a competitive mechanism between the epoxy network structure and intrinsic properties of ETS is proposed to explain this phenomenon: at low concentrations, the original C—C network dominates, where the intrinsic properties of ETS are constrained by the host matrix, leading to improved thermal stability. Simultaneously, the bandgap difference between ETS and DGEBA establishes charge barriers that can enhance insulation performance. However, at higher concentrations, the reduced crosslinking density and increased free volume caused by reactivity and structural mismatch between ETS and DGEBA ultimately lead to performance degradation. This study offers crucial theoretical insights into and produces the design strategies for developing high-performance siloxane-modified epoxy encapsulants.
      Corresponding author: LI Jing, lijing@hzcu.edu.cn ; ZHA Junwei, zhajw@ncepu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52207032) and the China Postdoctoral Science Foundation (Grant Nos. 2023M733031, 2024M751525).
    [1]

    任俊文, 姜国庆, 陈志杰, 魏华超, 赵莉华, 贾申利 2024 73 027703Google Scholar

    Ren J W, Jiang G Q, Chen Z J, Wei H C, Zhao L H, Jia S L 2024 Acta Phys. Sin. 73 027703Google Scholar

    [2]

    Geng H R, Zhao L, Deng J, Chen J R, Fan Y H, Zhao Q Y, Gui H X, Liao J H, Zhao Y F, Qian Y X, Wang G Z 2025 Compos. Sci. Technol. 261 110993Google Scholar

    [3]

    You Z Y, Weng L, Guan L Z, Zhang X R, Wu Z J, Chen H, Zhao W 2025 High Volt. 10 219Google Scholar

    [4]

    Jiang C W, Hao C X, Zi C F, Li J, Liu W J, Bian Y M, Sun F Y, Xu Y Q, Yan Y X, Wang L Y, Su F Y, Tian Y Q 2025 Compos. Sci. Technol. 265 111135Google Scholar

    [5]

    Xia G W, Xie J, Song Y Z, Duan Q J, Zhong Y Y, Xie Q 2025 Compos. Sci. Technol. 261 111019Google Scholar

    [6]

    Yang X, Huang W J, Dong H, Zha J W 2025 Adv. Mater. 37 2500472Google Scholar

    [7]

    Maes S, Badi N, Winne J M, Du Prez F E 2025 Nat. Rev. Chem. 9 144Google Scholar

    [8]

    Yang K R, Dai J Y, Zhao W W, Wang S P, Liu X Q 2024 Compos. part B: Eng. 284 111728Google Scholar

    [9]

    Zhou Y, LaChance A M, Wang Q, Gao Y F, Zhou J R, Huang B D, Shen K Y, Hou Z L, Lei T, Wang N Z, Zuo Z, Liu S, Dissado L A, Shao T, Liang X D, Cao Y, Sun L Y, Wu C, 2025 J. Mater. Chem. A 13 12926Google Scholar

    [10]

    Wang Z Y, Sun X, Wang Y, Liu J D, Zhang C, Zhao Z B, Du X Y 2023 Ceram. Int. 49 2871Google Scholar

    [11]

    黄家良, 高筱然, 郭亮, 宋思宇, 朱杰, 方志 2025 高电压技术 51 2476Google Scholar

    Huang J L, Gao X R, Guo L, Song S Y, Zhu J, Fang Z 2025 High Volt. Eng. 51 2476Google Scholar

    [12]

    邱甲云, 安秋凤, 史书源, 卢攀 2023 绝缘材料 56 1Google Scholar

    Qiu J Y, An Q F, Shi S Y, Lu P 2023 Insul. Mater. 56 1Google Scholar

    [13]

    Liu Y P, Li L, Liu H C, Zhang M J, Liu A J, Liu L, Tang L, Wang G L, Zhou S S 2020 Compos. Sci. Technol. 200 108418Google Scholar

    [14]

    贺涛, 刘文凤, 冀运东 2024 热固性树脂 39 1Google Scholar

    He T, Liu W F, Ji Y D 2024 Thermoset. Resin 39 1Google Scholar

    [15]

    Jin B H, Jang J, Kang D J, Yoon S, Im H G 2022 Compos. Sci. Technol. 224 109456Google Scholar

    [16]

    Wang C Z, Li S X, Yuan Y, Ji Y D, Cao D F 2024 Polymer 308 127368Google Scholar

    [17]

    Zhang Y, Shi Y X, Jin C, Wu C, Dong H, Qu Z R, Song Y J 2025 React. Funct. Polym. 207 106114Google Scholar

    [18]

    Singha S, Thomas M 2008 IEEE Trans. Dielect. Electr. Insul. 15 12Google Scholar

    [19]

    Ma Y N, Zhao Z H, Zheng Z R, Li J W, Li M H, Hu J 2024 Matter 7 4046Google Scholar

    [20]

    Gibbs G V, Wallace A F, Cox D F, Downs R T, Ross N L, Rosso K M 2009 Am. Mineral. 94 1085Google Scholar

    [21]

    Rüchardt C, Beckhaus H 1980 Angew. Chem. Int. Ed. Engl. 19 429Google Scholar

    [22]

    Sun B Z, Liang H L, Che D Y, Liu H P, Guo S 2019 RSC Adv. 9 9099Google Scholar

    [23]

    Liu Z Y, Wang H, Chen Y Z, Kang G D, Hua L, Feng J D 2022 Polymers 14 512Google Scholar

    [24]

    Yu M, Chen Z Y, Li J, Tan J H, Zhu X B 2023 Molecules 28 2826Google Scholar

    [25]

    Weinhold F, West R 2011 Organometallics 30 5815Google Scholar

    [26]

    Armstrong D A, Yu D, Rauk A 1996 Can. J. Chem. 74 1192Google Scholar

    [27]

    Smith K L, Black K M 1984 J. Vac. Sci. Technol. A 2 744Google Scholar

    [28]

    Berthomieu C, Hienerwadel R 2009 Photosynth. Res. 101 157Google Scholar

    [29]

    Nabedryk E, Andrianambinintsoa S, Berger G, Leonhard M, Mäntele W, Breton J 1990 Biochim. Biophys. Acta–Bioenerg. 1016 49Google Scholar

    [30]

    Yin K, Fan Q H, Li J, Rahman T U, Zhang T Y, Paramane A, Chen X R 2024 High Volt. 9 930Google Scholar

    [31]

    Kim M T 1997 Thin Solid Films 311 157Google Scholar

    [32]

    Oh T 2010 Phys. Status Solidi C 7 448Google Scholar

    [33]

    Cao G, Yan Y, Zou X M, Zhu R S, Ouyang F Y 2018 Spectral Anal. Rev. 06 12Google Scholar

    [34]

    Turchanin A, Käfer D, El-Desawy M, Wöll C, Witte G, Gölzhäuser A 2009 Langmuir 25 7342Google Scholar

    [35]

    Dai X Z, Rumi A, Cavallini A, Bak C L, Hao J, Liao R J, Wang H 2024 IEEE Trans. Dielect. Electr. Insul. 31 2290Google Scholar

    [36]

    Zhu Y W, Jiang Y H, Cao F H, Wang P J, Ke J X, Liu J, Nie Y J, Li G C, Wei Y H, Lu G H, Li S T 2025 J. Mater. Chem. C 13 11697Google Scholar

    [37]

    Simmons J G, Tam M C 1973 Phys. Rev. B 7 3706Google Scholar

    [38]

    Wang T Y, Mao J, Zhang B, Zhang G X, Dang Z M 2024 Nat. Rev. Electr. Eng. 1 516Google Scholar

    [39]

    Wu C, Liang X D, Dissado L A, Chalashkanov N M, Dodd S J, Gao Y F, Xu S 2018 Compos. Sci. Technol. 163 56Google Scholar

    [40]

    Fu J Y 2014 Philos. Mag. 94 1788Google Scholar

    [41]

    Wu K N, Sui H R, Ren Y R, Yang K, Zhao P, Ouyang B H, Li H, Zhang X, Ran L, Li J Y 2025 IEEE Trans. Dielect. Electr. Insul. 32 815Google Scholar

    [42]

    Wang Q L, Chen X R, Li J Y, Paramane A, Huang X F, Ren N 2024 IEEE Trans. Dielect. Electr. Insul. 31 1823Google Scholar

    [43]

    高铭泽, 张沛红 2016 65 247802Google Scholar

    Gao M Z, Zhang P H 2016 Acta Phys. Sin. 65 247802Google Scholar

    [44]

    Grabowsky S, Beckmann J, Luger P 2012 Aust. J. Chem. 65 785Google Scholar

    [45]

    Chen J, Zhou Y, Huang X Y, Yu C Y, Han D L, Wang A, Zhu Y K, Shi K M, Kang Q, Li P L, Jiang P K, Qian X S, Bao H, Li S T, Wu G N, Zhu X Y, Wang Q 2023 Nature 615 62Google Scholar

  • 图 1  ETS单体的化学分子式

    Figure 1.  Molecular structure of ETS monomer.

    图 2  两种环氧树脂单体的分子轨道能级分布 (a) DGEBA; (b) ETS

    Figure 2.  Energy level distribution of two types of epoxy monomers: (a) DGEBA; (b) ETS.

    图 3  Pure EP, 2.5% Si-EP, 5% Si-EP和10% Si-EP复合材料的凝胶含量

    Figure 3.  The gel content of Pure EP, 2.5% Si-EP, 5% Si-EP, and 10% Si-EP composites.

    图 4  (a)—(d) Pure EP, 2.5% Si-EP, 5% Si-EP和10% Si-EP的SEM照片; (e), (f) 2.5% Si-EP表面C, O, Si元素分布及含量; (g), (h) 10% Si-EP表面C, O, Si元素分布及含量

    Figure 4.  (a)–(d) SEM of Pure EP, 2.5% Si-EP, 5% Si-EP and 10% Si-EP samples; (e), (f) distribution of C, O and Si elements and content on the surface of 2.5% Si-EP; (g), (h) distribution of C, O and Si elements and content on the surface of 10% Si-EP.

    图 5  Pure EP, 2.5% Si-EP, 5% Si-EP和10% Si-EP的XPS图谱以及Si-EP对应的Si 2p的精细图谱

    Figure 5.  XPS spectra of Pure EP, 2.5% Si-EP, 5% Si-EP和10% Si-EP samples, with insets showing high-resolution Si 2p spectra for the Si-EP samples.

    图 6  Pure EP, 2.5% Si-EP, 5% Si-EP 和10% Si-EP的FTIR图谱

    Figure 6.  FTIR spectra of Pure EP, 2.5% Si-EP, 5% Si-EP and 10% Si-EP samples.

    图 7  Pure EP, 2.5% Si-EP, 5% Si-EP 和10% Si-EP的DSC曲线

    Figure 7.  DSC curves of Pure EP, 2.5% Si-EP, 5% Si-EP and 10% Si-EP samples.

    图 8  Pure EP, 2.5% Si-EP, 5% Si-EP和10% Si-EP的热失重曲线

    Figure 8.  TGA curves of Pure EP, 2.5% Si-EP, 5% Si-EP and 10% Si-EP samples.

    图 9  Pure EP, 2.5% Si-EP, 5% Si-EP和10% Si-EP在不同场强下的电导率

    Figure 9.  Conductivity of Pure EP, 2.5% Si-EP, 5% Si-EP and 10% Si-EP samples at different applied electric fields.

    图 10  (a) Pure EP, (b) 2.5% Si-EP, (c) 5% Si-EP和(d) 10% Si-EP在不同场强下空间电荷分布随时间的变化

    Figure 10.  Space charge distribution of (a) Pure EP, (b) 2.5% Si-EP, (c) 5% Si-EP and (d) 10% Si-EP samples at different applied electric fields.

    图 11  Pure EP, 2.5% Si-EP, 5% Si-EP和10% Si-EP平均电荷密度随时间的衰减

    Figure 11.  Decay of average charge density with time for Pure EP, 2.5% Si-EP, 5% Si-EP and 10% Si-EP samples.

    图 12  Pure EP, 2.5% Si-EP, 5% Si-EP和10% Si-EP的陷阱能级

    Figure 12.  Trap energy levels of Pure EP, 2.5% Si-EP, 5% Si-EP and 10% Si-EP samples.

    图 13  Pure EP, 2.5% Si-EP, 5% Si-EP 和10% Si-EP的宽频介电常数实部ε'

    Figure 13.  Broadband dielectric spectroscopy real part ε' of Pure EP, 2.5% Si-EP, 5% Si-EP and 10% Si-EP samples.

    图 14  (a) Pure EP, (b) 2.5% Si-EP, (c) 5% Si-EP和(d) 10% Si-EP的宽频介电虚部ε''弛豫响应分解

    Figure 14.  Broadband dielectric spectroscopy imaginary part ε'' of (a) Pure EP, (b) 2.5% Si-EP, (c) 5% Si-EP and (d) 10% Si-EP samples.

    图 15  Pure EP, 2.5% Si-EP, 5% Si-EP和10% Si-EP交流击穿场强的韦布尔分布

    Figure 15.  Weibull distribution of AC breakdown field strength for Pure EP, 2.5% Si-EP, 5% Si-EP and 10% Si-EP samples.

    图 16  Pure EP, 2.5% Si-EP, 5% Si-EP, 10% Si-EP 环氧树脂交联网络随着ETS含量增大的演变示意图

    Figure 16.  Schematic diagram of the evolution of Pure EP, 2.5% Si-EP, 5% Si-EP, and 10% Si-EP cross-linked network with increasing ETS content.

    表 1  Pure EP, Si-EP韦布尔概率分布参数

    Table 1.  Weibull distribution parameters for Pure EP and Si-EP samples.

    Pure EP 2.5% Si-EP 5% Si-EP 10% Si-EP
    β 68.3 74.2 72.6 67.2
    σ 14.5 16.1 11.1 12.5
    DownLoad: CSV
    Baidu
  • [1]

    任俊文, 姜国庆, 陈志杰, 魏华超, 赵莉华, 贾申利 2024 73 027703Google Scholar

    Ren J W, Jiang G Q, Chen Z J, Wei H C, Zhao L H, Jia S L 2024 Acta Phys. Sin. 73 027703Google Scholar

    [2]

    Geng H R, Zhao L, Deng J, Chen J R, Fan Y H, Zhao Q Y, Gui H X, Liao J H, Zhao Y F, Qian Y X, Wang G Z 2025 Compos. Sci. Technol. 261 110993Google Scholar

    [3]

    You Z Y, Weng L, Guan L Z, Zhang X R, Wu Z J, Chen H, Zhao W 2025 High Volt. 10 219Google Scholar

    [4]

    Jiang C W, Hao C X, Zi C F, Li J, Liu W J, Bian Y M, Sun F Y, Xu Y Q, Yan Y X, Wang L Y, Su F Y, Tian Y Q 2025 Compos. Sci. Technol. 265 111135Google Scholar

    [5]

    Xia G W, Xie J, Song Y Z, Duan Q J, Zhong Y Y, Xie Q 2025 Compos. Sci. Technol. 261 111019Google Scholar

    [6]

    Yang X, Huang W J, Dong H, Zha J W 2025 Adv. Mater. 37 2500472Google Scholar

    [7]

    Maes S, Badi N, Winne J M, Du Prez F E 2025 Nat. Rev. Chem. 9 144Google Scholar

    [8]

    Yang K R, Dai J Y, Zhao W W, Wang S P, Liu X Q 2024 Compos. part B: Eng. 284 111728Google Scholar

    [9]

    Zhou Y, LaChance A M, Wang Q, Gao Y F, Zhou J R, Huang B D, Shen K Y, Hou Z L, Lei T, Wang N Z, Zuo Z, Liu S, Dissado L A, Shao T, Liang X D, Cao Y, Sun L Y, Wu C, 2025 J. Mater. Chem. A 13 12926Google Scholar

    [10]

    Wang Z Y, Sun X, Wang Y, Liu J D, Zhang C, Zhao Z B, Du X Y 2023 Ceram. Int. 49 2871Google Scholar

    [11]

    黄家良, 高筱然, 郭亮, 宋思宇, 朱杰, 方志 2025 高电压技术 51 2476Google Scholar

    Huang J L, Gao X R, Guo L, Song S Y, Zhu J, Fang Z 2025 High Volt. Eng. 51 2476Google Scholar

    [12]

    邱甲云, 安秋凤, 史书源, 卢攀 2023 绝缘材料 56 1Google Scholar

    Qiu J Y, An Q F, Shi S Y, Lu P 2023 Insul. Mater. 56 1Google Scholar

    [13]

    Liu Y P, Li L, Liu H C, Zhang M J, Liu A J, Liu L, Tang L, Wang G L, Zhou S S 2020 Compos. Sci. Technol. 200 108418Google Scholar

    [14]

    贺涛, 刘文凤, 冀运东 2024 热固性树脂 39 1Google Scholar

    He T, Liu W F, Ji Y D 2024 Thermoset. Resin 39 1Google Scholar

    [15]

    Jin B H, Jang J, Kang D J, Yoon S, Im H G 2022 Compos. Sci. Technol. 224 109456Google Scholar

    [16]

    Wang C Z, Li S X, Yuan Y, Ji Y D, Cao D F 2024 Polymer 308 127368Google Scholar

    [17]

    Zhang Y, Shi Y X, Jin C, Wu C, Dong H, Qu Z R, Song Y J 2025 React. Funct. Polym. 207 106114Google Scholar

    [18]

    Singha S, Thomas M 2008 IEEE Trans. Dielect. Electr. Insul. 15 12Google Scholar

    [19]

    Ma Y N, Zhao Z H, Zheng Z R, Li J W, Li M H, Hu J 2024 Matter 7 4046Google Scholar

    [20]

    Gibbs G V, Wallace A F, Cox D F, Downs R T, Ross N L, Rosso K M 2009 Am. Mineral. 94 1085Google Scholar

    [21]

    Rüchardt C, Beckhaus H 1980 Angew. Chem. Int. Ed. Engl. 19 429Google Scholar

    [22]

    Sun B Z, Liang H L, Che D Y, Liu H P, Guo S 2019 RSC Adv. 9 9099Google Scholar

    [23]

    Liu Z Y, Wang H, Chen Y Z, Kang G D, Hua L, Feng J D 2022 Polymers 14 512Google Scholar

    [24]

    Yu M, Chen Z Y, Li J, Tan J H, Zhu X B 2023 Molecules 28 2826Google Scholar

    [25]

    Weinhold F, West R 2011 Organometallics 30 5815Google Scholar

    [26]

    Armstrong D A, Yu D, Rauk A 1996 Can. J. Chem. 74 1192Google Scholar

    [27]

    Smith K L, Black K M 1984 J. Vac. Sci. Technol. A 2 744Google Scholar

    [28]

    Berthomieu C, Hienerwadel R 2009 Photosynth. Res. 101 157Google Scholar

    [29]

    Nabedryk E, Andrianambinintsoa S, Berger G, Leonhard M, Mäntele W, Breton J 1990 Biochim. Biophys. Acta–Bioenerg. 1016 49Google Scholar

    [30]

    Yin K, Fan Q H, Li J, Rahman T U, Zhang T Y, Paramane A, Chen X R 2024 High Volt. 9 930Google Scholar

    [31]

    Kim M T 1997 Thin Solid Films 311 157Google Scholar

    [32]

    Oh T 2010 Phys. Status Solidi C 7 448Google Scholar

    [33]

    Cao G, Yan Y, Zou X M, Zhu R S, Ouyang F Y 2018 Spectral Anal. Rev. 06 12Google Scholar

    [34]

    Turchanin A, Käfer D, El-Desawy M, Wöll C, Witte G, Gölzhäuser A 2009 Langmuir 25 7342Google Scholar

    [35]

    Dai X Z, Rumi A, Cavallini A, Bak C L, Hao J, Liao R J, Wang H 2024 IEEE Trans. Dielect. Electr. Insul. 31 2290Google Scholar

    [36]

    Zhu Y W, Jiang Y H, Cao F H, Wang P J, Ke J X, Liu J, Nie Y J, Li G C, Wei Y H, Lu G H, Li S T 2025 J. Mater. Chem. C 13 11697Google Scholar

    [37]

    Simmons J G, Tam M C 1973 Phys. Rev. B 7 3706Google Scholar

    [38]

    Wang T Y, Mao J, Zhang B, Zhang G X, Dang Z M 2024 Nat. Rev. Electr. Eng. 1 516Google Scholar

    [39]

    Wu C, Liang X D, Dissado L A, Chalashkanov N M, Dodd S J, Gao Y F, Xu S 2018 Compos. Sci. Technol. 163 56Google Scholar

    [40]

    Fu J Y 2014 Philos. Mag. 94 1788Google Scholar

    [41]

    Wu K N, Sui H R, Ren Y R, Yang K, Zhao P, Ouyang B H, Li H, Zhang X, Ran L, Li J Y 2025 IEEE Trans. Dielect. Electr. Insul. 32 815Google Scholar

    [42]

    Wang Q L, Chen X R, Li J Y, Paramane A, Huang X F, Ren N 2024 IEEE Trans. Dielect. Electr. Insul. 31 1823Google Scholar

    [43]

    高铭泽, 张沛红 2016 65 247802Google Scholar

    Gao M Z, Zhang P H 2016 Acta Phys. Sin. 65 247802Google Scholar

    [44]

    Grabowsky S, Beckmann J, Luger P 2012 Aust. J. Chem. 65 785Google Scholar

    [45]

    Chen J, Zhou Y, Huang X Y, Yu C Y, Han D L, Wang A, Zhu Y K, Shi K M, Kang Q, Li P L, Jiang P K, Qian X S, Bao H, Li S T, Wu G N, Zhu X Y, Wang Q 2023 Nature 615 62Google Scholar

  • [1] Wang Jiang-Qiong, Li Wei-Kang, Zhang Wen-Ye, Wan Bao-Quan, Zha Jun-Wei. Aging and life control of cross-linked polyethylene as cable insulation material. Acta Physica Sinica, 2024, 73(7): 078801. doi: 10.7498/aps.73.20240201
    [2] Ren Jun-Wen, Jiang Guo-Qing, Chen Zhi-Jie, Wei Hua-Chao, Zhao Li-Hua, Jia Shen-Li. Surface structure design of boron nitride nanotubes and mechanism of their regulation on properties of epoxy composite dielectric. Acta Physica Sinica, 2024, 73(2): 027703. doi: 10.7498/aps.73.20230708
    [3] Yin Kai, Guo Qi-Yang, Zhang Tian-Yin, Li Jing, Chen Xiang-Rong. Improving insulation properties of epoxy filled with surface fluorinated polystyrene nanospheres. Acta Physica Sinica, 2024, 73(12): 127703. doi: 10.7498/aps.73.20240215
    [4] Liu Xiu-Cheng, Yang Zhi, Guo Hao, Chen Ying, Luo Xiang-Long, Chen Jian-Yong. Molecular dynamics simulation of thermal conductivity of diamond/epoxy resin composites. Acta Physica Sinica, 2023, 72(16): 168102. doi: 10.7498/aps.72.20222270
    [5] Li Dong-Yang, Zhang Yuan-Xian, Ou Yong-Xiong, Pu Xiao-Yun. Optofluidic fluorescence resonance energy transfer lasing in a polydimethylsiloxane microfluidic channel. Acta Physica Sinica, 2019, 68(5): 054203. doi: 10.7498/aps.68.20181696
    [6] Chen Qi, Shang Xue-Fu, Zhang Peng, Xu Peng, Wang Miao, Nobuyuki Imanishi. Li1.4Al0.4Ti1.6(PO4)3 high lithium ion conducting solid electrolyte prepared by tape casting and modified with epoxy resin. Acta Physica Sinica, 2017, 66(18): 188201. doi: 10.7498/aps.66.188201
    [7] Gao Ming-Ze, Zhang Pei-Hong. Relationship between dielectric properties and nanoparticle dispersion of nano-SiO2/epoxy composite. Acta Physica Sinica, 2016, 65(24): 247802. doi: 10.7498/aps.65.247802
    [8] Ru Jia-Sheng, Min Dao-Min, Zhang Chong, Li Sheng-Tao, Xing Zhao-Liang, Li Guo-Chang. Research on surface potential decay characteristics of epoxy resin charged by direct current corona. Acta Physica Sinica, 2016, 65(4): 047701. doi: 10.7498/aps.65.047701
    [9] Lin Sheng-Jun, Huang Yin, Xie Dong-Ri, Min Dao-Min, Wang Wei-Wang, Yang Liu-Qing, Li Sheng-Tao. Molecular relaxation and glass transition properties of epoxy resin at high temperature. Acta Physica Sinica, 2016, 65(7): 077701. doi: 10.7498/aps.65.077701
    [10] Li Sheng-Kun, Tang Jun, Mao Hong-Qing, Wang Ming-Huan, Chen Guo-Bin, Zhai Chao, Zhang Xiao-Ming, Shi Yun-Bo, Liu Jun. Effect of magnetic capacitance in the Fe3O4 nanopartides and polydimethylsiloxane composite material. Acta Physica Sinica, 2014, 63(5): 057501. doi: 10.7498/aps.63.057501
    [11] An Ping, Guo Hao, Chen Meng, Zhao Miao-Miao, Yang Jiang-Tao, Liu Jun, Xue Chen-Yang, Tang Jun. Preparation and force-sensitive properties of carbon nanotube/polydimethylsiloxane composites films. Acta Physica Sinica, 2014, 63(23): 237306. doi: 10.7498/aps.63.237306
    [12] Wen Chang-Li, Ji Jia-Rong, Dou Wen-Hua, Feng Xiang-Hua, Xu Rong, Men Tao, Liu Chang-Hai. Improvement of the technology of making multi-mode polysiloxane waveguides. Acta Physica Sinica, 2012, 61(9): 094202. doi: 10.7498/aps.61.094202
    [13] Liu Ya-Qiang, An Zhen-Lian, Cang Jun, Zhang Ye-Wen, Zheng Fei-Hu. Influence of fluorination time on surface charge accumulation on epoxy resin insulation. Acta Physica Sinica, 2012, 61(15): 158201. doi: 10.7498/aps.61.158201
    [14] Liu Xiang, Xie Kai, Zheng Chun-Man, Wang Jun. Electrochemical property of Si-O-C composite anode materials prepared by pyrolyzing polysiloxane containing phenyl under different atmospheres. Acta Physica Sinica, 2011, 60(11): 118202. doi: 10.7498/aps.60.118202
    [15] Yue Lei-Lei, Chen Yu, Fan Guang-Hui, He Jiao, Zhao De-Xun, Liu Ying-Kai. Influence of defect states on band gaps of the 4340 steel in epoxy in two-dimensional phononic crystal. Acta Physica Sinica, 2011, 60(10): 106103. doi: 10.7498/aps.60.106103
    [16] Zhou Dan, Luo Lai-Hui, Wang Fei-Fei, Jia Yan-Min, Zhao Xiang-Yong, Luo Hao-Su. Research on the performace of 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 single crystal/polymer 1-3 piezoelectric composite material. Acta Physica Sinica, 2008, 57(7): 4552-4557. doi: 10.7498/aps.57.4552
    [17] Jiang Le, Yang De-Ren, Yu Xue-Gong, Ma Xiang-Yang, Xu Jin, Que Duan-Lin. Effect of nitrogen on oxygen precipitation in Czochralski silicon during high-te mperature annealing. Acta Physica Sinica, 2003, 52(8): 2000-2004. doi: 10.7498/aps.52.2000
    [18] QIU SU-JUAN, CHEN KAI-MAO, WU LAN-QING. DEEP LEVELS IN Si-IMPLANTED SEMI-INSULATOR GALLIUM ARSENIDE. Acta Physica Sinica, 1993, 42(8): 1304-1310. doi: 10.7498/aps.42.1304
    [19] THE Mn-Zn FERRITE SINGLE CRYSTAL GROUP. A HIGH TEMPERATURE FURNACE FOR GROWING SINGLE CRYSTALS IN AN ATMOSPHERE OF OXYGEN. Acta Physica Sinica, 1976, 25(2): 178-178. doi: 10.7498/aps.25.178
    [20] HSU SHI-QIU, HAN JI-ZHI. A STUDY OF THE CURING PROCESS OF EPOXY RESIN BY INFRARED SPECTRA. Acta Physica Sinica, 1960, 16(2): 81-85. doi: 10.7498/aps.16.81
Metrics
  • Abstract views:  528
  • PDF Downloads:  20
  • Cited By: 0
Publishing process
  • Received Date:  19 May 2025
  • Accepted Date:  24 July 2025
  • Available Online:  12 August 2025
  • Published Online:  05 October 2025
  • /

    返回文章
    返回
    Baidu
    map