Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Order-disorder phase transition in silicon-containing high-entropy materials

LU Xinyi ZHANG Yong

Citation:

Order-disorder phase transition in silicon-containing high-entropy materials

LU Xinyi, ZHANG Yong
cstr: 32037.14.aps.74.20250307
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • High-entropy alloys (HEAs), representing a significant category of multi-component alloys, have attracted significant attention due to their outstanding mechanical and functional properties. This review focuses on the order-disorder phase transition mechanisms in silicon-based HEAs, systematically addressing the thermodynamic and kinetic regulation principles and their effects on material performance. The research has shown that adding silicon improves atomic size matching and mixing enthalpy, allowing high-entropy alloys to have both ordered and disordered phases, thereby significantly enhancing their mechanical and physicochemical properties.The evolution of ordered and disordered phases is strictly controlled by fabrication processes. Advanced fabrication techniques, such as laser cladding and powder metallurgy, as well as temperature/pressure modulation, can precisely control phase formation and layered structure, achieving synergistic strengthening through multiphase structures. Rapid cooling techniques such as laser cladding suppress the nucleation and growth of brittle intermetallic compounds, which is beneficial for single-phase FCC structures. On the contrary, controlled annealing treatments can induce phase transitions towards ordered BCC/B2 structures, enhancing high-temperature stability. Advanced techniques such as powder plasma arc additive manufacturing (PPA-AM) utilize rapid solidification to refine grain size and effectively disperse second phases. Thermodynamic drivers, particularly the competition between entropy and enthalpy quantified by the parameter Ω, as well as external stimuli such as pressure, provide precise control over the phase transition pathways and final microstructures. Furthermore, the incorporation of sillicon enhances functional performance, including increasing electrical resistivity, customizing magnetic responses, and improved high-temperature oxidation resistance through the formation of Al2O3/SiO2 layers. Despite these advancements, there are still challenges in understanding atomic-scale dynamics of phase transitions and expanding cost-effective manufacturing processes. Future efforts should integrate multiscale characterization, computational modeling, and performance validation under extreme conditions to accelerate the engineering applications of silicon-based HEAs in aerospace, energy storage, and electronic devices.
      Corresponding author: ZHANG Yong, drzhangy@ustb.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52273280).
    [1]

    Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, Chang S Y 2004 Adv. Eng. Mater. 6 299Google Scholar

    [2]

    Cantor B, Chang I T H, Knight P, Vincent A J B 2004 Mater. Sci. Eng. A 375–377 213Google Scholar

    [3]

    Huang E W, Lee W J, Singh S S, Kumar P, Lee C Y, Lam T N, Chin H H, Lin B H, Liaw P K 2022 Mater. Sci. Eng. : R: Rep. 147 100645Google Scholar

    [4]

    Tsai M H, Yeh J W 2014 Mater. Res. Lett. 2 107Google Scholar

    [5]

    Chandrakar R, Chandraker S, Kumar A, Jaiswal A 2024 Mater. Res. Express 11 116512Google Scholar

    [6]

    Sohrabi M J, Kalhor A, Mirzadeh H, Rodak K, Kim H S 2024 Prog. Mater Sci. 144 101295Google Scholar

    [7]

    Wu Y, Li Z, Feng H, He S 2022 Materials 15 3992Google Scholar

    [8]

    Liu F F, Liaw P, Zhang Y 2022 Metals 12 501Google Scholar

    [9]

    Luan H W, Shao Y, Li J F, Mao W L, Han Z D, Shao C, Yao K F 2020 Scr. Mater. 179 40Google Scholar

    [10]

    叶喜葱, 徐张洋, 王童, 徐东, 张文, 方东 2020 特种铸造及有色合金 40 1323Google Scholar

    Ye X C, Xu Z Y, Wang T, Xu D, Zhang W, Fang D 2020 Spec. Cast. Nonferrous Alloys 40 1323Google Scholar

    [11]

    Li Y T, Zhang P, Zhang J Y, Chen Z, Shen B L 2021 Corros. Sci. 190 109633Google Scholar

    [12]

    Kumar A, Chandrakar R, Chandraker S, Rao K R, Chopkar M 2021 J. Alloys Compd. 856 158193Google Scholar

    [13]

    Zhang Y T, Zhang M, Li D, Zuo T, Zhou K, Gao M C, Sun B, Shen T 2019 Metals 9 382Google Scholar

    [14]

    Lee H, Sharma A, Ahn B 2023 J. Alloys Compd. 947 169545Google Scholar

    [15]

    Gearhart C A 1990 Am. J. Phys. 58 468Google Scholar

    [16]

    Li Z Z, Zhao S T, Ritchie R O, Meyers M A 2019 Prog. Mater Sci. 102 296Google Scholar

    [17]

    Zhang Y, Zhou Y J, Lin J P, Chen G L, Liaw P K 2008 Adv. Eng. Mater. 10 534Google Scholar

    [18]

    Yang X H, Zhang Y 2012 Mater. Chem. Phys. 132 233Google Scholar

    [19]

    Yan X H, Liaw P K, Zhang Y 2021 Metall. Mater. Trans. A 52 2111Google Scholar

    [20]

    Wu G, Liu C, Yan Y Q, Liu S D, Ma X Y, Yue S Y, Shan Z W 2024 Nat. Commun. 15 1223Google Scholar

    [21]

    Wu G, Liu S D, Wang Q, Rao J, Xia W Z, Yan Y Q, Eckert J, Liu C, Ma E, Shan Z W 2023 Nat. Commun. 14 3670Google Scholar

    [22]

    Miracle D B, Senkov O N 2017 Acta Mater. 122 448Google Scholar

    [23]

    Lei Z F, Liu X J, Wu Y, Wang H, Jiang S H, Wang S D, Hui X D, Wu Y D, Gault B, Kontis P, Raabe D, Gu L, Zhang Q H, Chen H W, Wang H T, Liu J B, An K, Zeng Q S, Nieh T G, Lu Z P 2018 Nature 563 546Google Scholar

    [24]

    Soni V, Gwalani B, Senkov O N, Viswanathan B, Alam T, Miracle D B, Banerjee R 2018 J. Mater. Res. 33 3235Google Scholar

    [25]

    Soni V, Senkov O N, Gwalani B, Miracle D B, Banerjee R 2018 Sci. Rep. 8 8816Google Scholar

    [26]

    Soni V, Gwalani B, Alam T, Dasari S, Zheng Y, Senkov O N, Miracle D, Banerjee R 2020 Acta Mater. 185 89Google Scholar

    [27]

    Huang X J, Miao J S, Luo A A 2018 J. Mater. Sci. 54 2271Google Scholar

    [28]

    Huang X J, Miao J S, Luo A A 2022 Scr. Mater. 210 114462Google Scholar

    [29]

    Sundman B, Chen Q, Du Y 2018 J. Phase Equilib. Diffus. 39 678Google Scholar

    [30]

    Singh P, Johnson D D 2021 J. Mater. Res. 37 136Google Scholar

    [31]

    Zhang Y, Zuo T T, Tang Z, Gao M C, Dahmen K A, Liaw P K, Lu Z P 2014 Prog. Mater Sci. 61 1Google Scholar

    [32]

    Gu X Y, Zhuang Y X, Jia P 2022 Mater. Sci. Eng. A 840 142983Google Scholar

    [33]

    Cheng P, Zhao Y H, Xu X T, Wang S, Sun Y Y, Hou H 2020 Mater. Sci. Eng. A 772 138681Google Scholar

    [34]

    Zhu J M, Fu H M, Zhang H F, Wang A M, Li H, Hu Z Q 2010 Mater. Sci. Eng. A 527 7210Google Scholar

    [35]

    林应征, 杨洪宇, 陈芳, 颜建辉 2023 材料热处理学报 44 69Google Scholar

    Lin Y Z, Yang H Y, Chen F, Yan J H 2023 Trans. Mater. Heat Treat. 44 69Google Scholar

    [36]

    Babilas R, Łoński W, Boryło P, Kądziołka Gaweł M, Gębara P, Radoń A 2020 J. Magn. Magn. Mater. 502 166492Google Scholar

    [37]

    Zhang H, Pan Y, He Y Z 2011 J. Therm. Spray Technol. 20 1049Google Scholar

    [38]

    Zhang S Y, Han B, Li M Y, Zhang Q, Hu C Y, Jia C X, Li Y, Wang Y 2021 Surf. Coat. Technol. 417 127218Google Scholar

    [39]

    Santodonato L J, Liaw P K, Unocic R R, Bei H, Morris J R 2018 Nat. Commun. 9 4520Google Scholar

    [40]

    Torralba J M, Alvaredo P, García Junceda A 2020 Powder Metall. 63 227Google Scholar

    [41]

    Brif Y, Thomas M, Todd I 2015 Scr. Mater. 99 93Google Scholar

    [42]

    Han C J, Fang Q H, Shi Y S, Tor S B, Chua C K, Zhou K 2020 Adv. Mater. 32 1903855Google Scholar

    [43]

    Luo J, Wang J, Su C, Geng Y, Chen X 2024 J. Mater. Eng. Perform. 33 12413Google Scholar

    [44]

    Shun T T, Hung C H, Lee C F 2010 J. Alloys Compd. 493 105Google Scholar

    [45]

    Hazen R M, Navrotsky A 1996 Am. Mineral. 81 1021Google Scholar

    [46]

    Starenchenko S V 2012 Russ. Phys. J. 54 965Google Scholar

    [47]

    Ma Y M, Fan J T, Zhang L J, Zhang M D, Cui P, Dong W Q, Yu P F, Li Y C, Liaw P K, Li G 2018 Intermetallics 103 63Google Scholar

    [48]

    Ma L L, Wang L, Nie Z H, Wang F C, Xue Y F, Zhou J L, Cao T Q, Wang Y D, Ren Y 2017 Acta Mater. 128 12Google Scholar

    [49]

    Ji C W, Ma A, Jiang J H 2022 J. Alloys Compd. 900 163508Google Scholar

    [50]

    Kumar A, Dhekne P, Swarnakar A K, Chopkar M 2018 Mater. Res. Express 6 026532Google Scholar

    [51]

    Lin T X, Feng M Y, Lian G F, Lu H, Chen C R, Huang X 2024 Mater. Charact. 216 114246Google Scholar

    [52]

    Li Z, Taheri M, Torkamany P, Heidarpour I, Torkamany M J 2024 Vacuum 219 112749Google Scholar

    [53]

    Shang X L, Wang Z J, He F, Wang J C, Li J J, Yu J K 2017 Sci. China Technol. Sci. 61 189Google Scholar

    [54]

    Wang S, Wu Y, Gesmundo F, Niu Y 2008 Oxid. Met. 69 299Google Scholar

    [55]

    Jiang S M, Xu C Z, Li H Q, Liu S C, Gong J, Sun C 2010 Corros. Sci. 52 435Google Scholar

    [56]

    Zuo T T, Li R B, Ren X J, Zhang Y 2014 J. Magn. Magn. Mater. 371 60Google Scholar

    [57]

    Wen J J, Liu X, Li Z H, Li W W 2023 J. Alloys Compd. 934 167622Google Scholar

    [58]

    Su Y, Lei X C, Chen W J, Su Y P, Liu H W, Ren S Y, Tong R Y, Lin Y T, Jiang W J, Liu X Z, Su D, Zhang Y G 2024 Chem. Eng. J. 500 157197Google Scholar

    [59]

    Lei X C, Wang Y Y, Wang J Y, Su Y, Ji P X, Liu X Z, Guo S N, Wang X F, Hu Q M, Gu L, Zhang Y G, Yang R, Zhou G, Su D 2023 Small Methods 8 2300754Google Scholar

  • 图 1  (a)各种合金和HEAs的强度-塑性图以及含Si HEAs的数据; (b)不同的合金元素对HEAs延展性和拉伸强度的影响[6]

    Figure 1.  (a) Strength-ductility diagram of various alloys and HEAs with the addition of the data of the Si-containing HEAs; (b) changes in the ductility and tensile strength with the addition of the different alloying elements in HEAs[6].

    图 2  基于混合焓$\Delta H_{\text{mix}}$和原子尺寸差δ的相形成图[17]

    Figure 2.  Phase formation map based on the enthalpy of mixing $\Delta H_{\text{mix}}$ and the atomic size difference δ [17].

    图 3  多元合金中参数Ωδ之间的关系[18]

    Figure 3.  Relationship between parameters Ω and δ for multi-component alloys[18].

    图 4  无序(A2)和有序(B2) BCC晶体结构的图示[28]

    Figure 4.  Illustration of disordered (A2) and ordered (B2) BCC crystal structure[28].

    图 5  激光熔覆示意图[38]

    Figure 5.  Schematic diagram of laser cladding[38].

    图 6  PPA-AM制备高熵合金示意图[43]

    Figure 6.  Schematic diagram of high-entropy alloys fabricated by PPA-AM[43].

    图 7  (a)室温拉伸曲线; (b) BCC阶段强化[32]

    Figure 7.  (a) Room-temperature tensile curves; (b) strengthening by the BCC phase[32].

    图 8  (a) CoCrFeMnNiSix高熵合金涂层的动电位极化曲线; (b)电化学腐蚀参数[51]

    Figure 8.  (a) Potentiodynamic polarization curves of CoCrFeMnNiSix high-entropy-alloy coatings; (b) parameters of electrochemical corrosion[51].

    图 9  AlCoCrFeNiSix HEAs在1100 ℃下200 h的氧化行为示意图 (a) Si0; (b) Si0.2; (c) Si≥0.5[11]

    Figure 9.  Schematic diagram of oxidation behavior for AlCoCrFeNiSix HEAs at 1100 ℃ for 200 h: (a) Si0; (b) Si0.2; (c) Si≥0.5[11].

    Baidu
  • [1]

    Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, Chang S Y 2004 Adv. Eng. Mater. 6 299Google Scholar

    [2]

    Cantor B, Chang I T H, Knight P, Vincent A J B 2004 Mater. Sci. Eng. A 375–377 213Google Scholar

    [3]

    Huang E W, Lee W J, Singh S S, Kumar P, Lee C Y, Lam T N, Chin H H, Lin B H, Liaw P K 2022 Mater. Sci. Eng. : R: Rep. 147 100645Google Scholar

    [4]

    Tsai M H, Yeh J W 2014 Mater. Res. Lett. 2 107Google Scholar

    [5]

    Chandrakar R, Chandraker S, Kumar A, Jaiswal A 2024 Mater. Res. Express 11 116512Google Scholar

    [6]

    Sohrabi M J, Kalhor A, Mirzadeh H, Rodak K, Kim H S 2024 Prog. Mater Sci. 144 101295Google Scholar

    [7]

    Wu Y, Li Z, Feng H, He S 2022 Materials 15 3992Google Scholar

    [8]

    Liu F F, Liaw P, Zhang Y 2022 Metals 12 501Google Scholar

    [9]

    Luan H W, Shao Y, Li J F, Mao W L, Han Z D, Shao C, Yao K F 2020 Scr. Mater. 179 40Google Scholar

    [10]

    叶喜葱, 徐张洋, 王童, 徐东, 张文, 方东 2020 特种铸造及有色合金 40 1323Google Scholar

    Ye X C, Xu Z Y, Wang T, Xu D, Zhang W, Fang D 2020 Spec. Cast. Nonferrous Alloys 40 1323Google Scholar

    [11]

    Li Y T, Zhang P, Zhang J Y, Chen Z, Shen B L 2021 Corros. Sci. 190 109633Google Scholar

    [12]

    Kumar A, Chandrakar R, Chandraker S, Rao K R, Chopkar M 2021 J. Alloys Compd. 856 158193Google Scholar

    [13]

    Zhang Y T, Zhang M, Li D, Zuo T, Zhou K, Gao M C, Sun B, Shen T 2019 Metals 9 382Google Scholar

    [14]

    Lee H, Sharma A, Ahn B 2023 J. Alloys Compd. 947 169545Google Scholar

    [15]

    Gearhart C A 1990 Am. J. Phys. 58 468Google Scholar

    [16]

    Li Z Z, Zhao S T, Ritchie R O, Meyers M A 2019 Prog. Mater Sci. 102 296Google Scholar

    [17]

    Zhang Y, Zhou Y J, Lin J P, Chen G L, Liaw P K 2008 Adv. Eng. Mater. 10 534Google Scholar

    [18]

    Yang X H, Zhang Y 2012 Mater. Chem. Phys. 132 233Google Scholar

    [19]

    Yan X H, Liaw P K, Zhang Y 2021 Metall. Mater. Trans. A 52 2111Google Scholar

    [20]

    Wu G, Liu C, Yan Y Q, Liu S D, Ma X Y, Yue S Y, Shan Z W 2024 Nat. Commun. 15 1223Google Scholar

    [21]

    Wu G, Liu S D, Wang Q, Rao J, Xia W Z, Yan Y Q, Eckert J, Liu C, Ma E, Shan Z W 2023 Nat. Commun. 14 3670Google Scholar

    [22]

    Miracle D B, Senkov O N 2017 Acta Mater. 122 448Google Scholar

    [23]

    Lei Z F, Liu X J, Wu Y, Wang H, Jiang S H, Wang S D, Hui X D, Wu Y D, Gault B, Kontis P, Raabe D, Gu L, Zhang Q H, Chen H W, Wang H T, Liu J B, An K, Zeng Q S, Nieh T G, Lu Z P 2018 Nature 563 546Google Scholar

    [24]

    Soni V, Gwalani B, Senkov O N, Viswanathan B, Alam T, Miracle D B, Banerjee R 2018 J. Mater. Res. 33 3235Google Scholar

    [25]

    Soni V, Senkov O N, Gwalani B, Miracle D B, Banerjee R 2018 Sci. Rep. 8 8816Google Scholar

    [26]

    Soni V, Gwalani B, Alam T, Dasari S, Zheng Y, Senkov O N, Miracle D, Banerjee R 2020 Acta Mater. 185 89Google Scholar

    [27]

    Huang X J, Miao J S, Luo A A 2018 J. Mater. Sci. 54 2271Google Scholar

    [28]

    Huang X J, Miao J S, Luo A A 2022 Scr. Mater. 210 114462Google Scholar

    [29]

    Sundman B, Chen Q, Du Y 2018 J. Phase Equilib. Diffus. 39 678Google Scholar

    [30]

    Singh P, Johnson D D 2021 J. Mater. Res. 37 136Google Scholar

    [31]

    Zhang Y, Zuo T T, Tang Z, Gao M C, Dahmen K A, Liaw P K, Lu Z P 2014 Prog. Mater Sci. 61 1Google Scholar

    [32]

    Gu X Y, Zhuang Y X, Jia P 2022 Mater. Sci. Eng. A 840 142983Google Scholar

    [33]

    Cheng P, Zhao Y H, Xu X T, Wang S, Sun Y Y, Hou H 2020 Mater. Sci. Eng. A 772 138681Google Scholar

    [34]

    Zhu J M, Fu H M, Zhang H F, Wang A M, Li H, Hu Z Q 2010 Mater. Sci. Eng. A 527 7210Google Scholar

    [35]

    林应征, 杨洪宇, 陈芳, 颜建辉 2023 材料热处理学报 44 69Google Scholar

    Lin Y Z, Yang H Y, Chen F, Yan J H 2023 Trans. Mater. Heat Treat. 44 69Google Scholar

    [36]

    Babilas R, Łoński W, Boryło P, Kądziołka Gaweł M, Gębara P, Radoń A 2020 J. Magn. Magn. Mater. 502 166492Google Scholar

    [37]

    Zhang H, Pan Y, He Y Z 2011 J. Therm. Spray Technol. 20 1049Google Scholar

    [38]

    Zhang S Y, Han B, Li M Y, Zhang Q, Hu C Y, Jia C X, Li Y, Wang Y 2021 Surf. Coat. Technol. 417 127218Google Scholar

    [39]

    Santodonato L J, Liaw P K, Unocic R R, Bei H, Morris J R 2018 Nat. Commun. 9 4520Google Scholar

    [40]

    Torralba J M, Alvaredo P, García Junceda A 2020 Powder Metall. 63 227Google Scholar

    [41]

    Brif Y, Thomas M, Todd I 2015 Scr. Mater. 99 93Google Scholar

    [42]

    Han C J, Fang Q H, Shi Y S, Tor S B, Chua C K, Zhou K 2020 Adv. Mater. 32 1903855Google Scholar

    [43]

    Luo J, Wang J, Su C, Geng Y, Chen X 2024 J. Mater. Eng. Perform. 33 12413Google Scholar

    [44]

    Shun T T, Hung C H, Lee C F 2010 J. Alloys Compd. 493 105Google Scholar

    [45]

    Hazen R M, Navrotsky A 1996 Am. Mineral. 81 1021Google Scholar

    [46]

    Starenchenko S V 2012 Russ. Phys. J. 54 965Google Scholar

    [47]

    Ma Y M, Fan J T, Zhang L J, Zhang M D, Cui P, Dong W Q, Yu P F, Li Y C, Liaw P K, Li G 2018 Intermetallics 103 63Google Scholar

    [48]

    Ma L L, Wang L, Nie Z H, Wang F C, Xue Y F, Zhou J L, Cao T Q, Wang Y D, Ren Y 2017 Acta Mater. 128 12Google Scholar

    [49]

    Ji C W, Ma A, Jiang J H 2022 J. Alloys Compd. 900 163508Google Scholar

    [50]

    Kumar A, Dhekne P, Swarnakar A K, Chopkar M 2018 Mater. Res. Express 6 026532Google Scholar

    [51]

    Lin T X, Feng M Y, Lian G F, Lu H, Chen C R, Huang X 2024 Mater. Charact. 216 114246Google Scholar

    [52]

    Li Z, Taheri M, Torkamany P, Heidarpour I, Torkamany M J 2024 Vacuum 219 112749Google Scholar

    [53]

    Shang X L, Wang Z J, He F, Wang J C, Li J J, Yu J K 2017 Sci. China Technol. Sci. 61 189Google Scholar

    [54]

    Wang S, Wu Y, Gesmundo F, Niu Y 2008 Oxid. Met. 69 299Google Scholar

    [55]

    Jiang S M, Xu C Z, Li H Q, Liu S C, Gong J, Sun C 2010 Corros. Sci. 52 435Google Scholar

    [56]

    Zuo T T, Li R B, Ren X J, Zhang Y 2014 J. Magn. Magn. Mater. 371 60Google Scholar

    [57]

    Wen J J, Liu X, Li Z H, Li W W 2023 J. Alloys Compd. 934 167622Google Scholar

    [58]

    Su Y, Lei X C, Chen W J, Su Y P, Liu H W, Ren S Y, Tong R Y, Lin Y T, Jiang W J, Liu X Z, Su D, Zhang Y G 2024 Chem. Eng. J. 500 157197Google Scholar

    [59]

    Lei X C, Wang Y Y, Wang J Y, Su Y, Ji P X, Liu X Z, Guo S N, Wang X F, Hu Q M, Gu L, Zhang Y G, Yang R, Zhou G, Su D 2023 Small Methods 8 2300754Google Scholar

Metrics
  • Abstract views:  4717
  • PDF Downloads:  126
  • Cited By: 0
Publishing process
  • Received Date:  10 March 2025
  • Accepted Date:  22 July 2025
  • Available Online:  30 July 2025
  • Published Online:  20 August 2025
  • /

    返回文章
    返回
    Baidu
    map