Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Imaging simulation of light scattering signals in atmospheric disturbance density fields

WANG Yuyao SUN Xiaobing CUI Wenyu HU Yuan YU Changping SONG Bo XU Lingling YU Haixiao WEI Yichen WANG Yuxuan YAO Shun

Citation:

Imaging simulation of light scattering signals in atmospheric disturbance density fields

WANG Yuyao, SUN Xiaobing, CUI Wenyu, HU Yuan, YU Changping, SONG Bo, XU Lingling, YU Haixiao, WEI Yichen, WANG Yuxuan, YAO Shun
cstr: 32037.14.aps.74.20250249
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • During flight operations, aircraft induces atmospheric disturbances in the surrounding environment through aerodynamic interactions between its geometric configuration and ambient air medium, resulting in spatially distinct density distribution characteristics that are significantly different from natural background scenario. Considering the positive correlation between atmospheric medium density and light scattering intensity, theoretical analysis shows that detecting the light scattering intensity signals in disturbed regions can map density distributions, thereby extracting the features of aircraft-induced atmospheric disturbance density fields. Based on the concept of long-range aircraft detection through atmospheric disturbance density field characterization, a novel remote sensing method for aircraft detection is proposed in this work. Specifically, a three-dimensional tomographic imaging detection mode for scattered light in an atmospheric disturbance region is designed, and a comprehensive simulation framework covering the entire process of disturbance optical signal generation, transmission, and response is constructed. The study accomplishes the following tasks: 1) the critical challenges in estimating the imaging modulation transfer function under short-exposure conditions subjected to laser pulse secondary scattering effects are resolved, and a photon scattering echo imaging simulation model for aircraft-induced disturbance density fields is established; 2) the scattering echo signal images from active light sources in disturbed density fields and the differential images obtained under disturbed background and non-disturbed background are simulated, with simulation results under varying system parameters analyzed systematically. The research demonstrates that this simulation model can be used to optimize detection system parameters, develop signal processing methods, and assess long-range detection capabilities, thus providing both theoretical foundations and technical support for advancing aircraft detection technologies based on density disturbance characteristics.
      Corresponding author: CUI Wenyu, cuiwenyu@aiofm.ac.cn ; HU Yuan, yhu@imech.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2022YFF0711703).
    [1]

    任维贺, 张月, 苏云, 张学敏, 邓红艳, 柳祎 2022 红外与激光工程 51 20210843Google Scholar

    Ren W H, Zhang Y, Su Y, Zhang X M, Deng H Y, Liu Y 2022 Infrared and Laser Engineering 51 20210843Google Scholar

    [2]

    Pan W J, Jiang Y Q, Zhang Y Q 2023 Sustainability 15 6391Google Scholar

    [3]

    Wei Z Q, Li X C, Liu F 2022 Int. J. Aeronaut. Space Sci. 23 406Google Scholar

    [4]

    Liu Z R, Mao J M 2003 Chin. Phys. Lett. 20 206Google Scholar

    [5]

    潘卫军, 栾天, 康贤彪, 张庆宇, 任杰, 张强 2019 空气动力学学报 37 511Google Scholar

    Pan, W J, Luan, T, Kang, X, Zhang Q Y, Ren, J, Zhang, Q 2019 Acta Aerodyn. Sin. 37 511Google Scholar

    [6]

    Garnet M, Altman A 2009 J. Aircr. 46 263Google Scholar

    [7]

    Burnham D C, Hallock J N 2013 J. Aircr. 50 82Google Scholar

    [8]

    Köpp F, Rahm S, Smalikho I 2004 J. Atmos. Oceanic Technol. 21 194Google Scholar

    [9]

    Yoshikawa E, Matayoshi N 2017 AIAA J. 55 2269Google Scholar

    [10]

    Gao H, Li J B, Chan P W, Hon K K, Wang X S 2018 Opt. Express 26 16377Google Scholar

    [11]

    Marshall R E, Mudukutore A, Wissel V L H, Myers T 1998 Three-Centimeter Doppler Radar Observations of Wingtip-Generated Wake Vortices in Clear Air Report No. NASA/ CR-97-206260

    [12]

    武宇, 易仕和, 陈植, 张庆虎, 冈敦殿 2013 62 184702Google Scholar

    Wu Y, Yi S H, Chen Z, Zhang Q H, Gang D D 2013 Acta Phys. Sin. 62 184702Google Scholar

    [13]

    易仕和, 陈植 2015 64 199401Google Scholar

    Yi S, Chen Z 2015 Acta Phys. Sin. 64 199401Google Scholar

    [14]

    Sun Q, Cui W, Li Y H, Cheng B Q, Jin D, Li J 2014 Chin. Phys. B 23 075210Google Scholar

    [15]

    Heineck J T, Banks D W, Smith N T, Schairer E T, Bean P S, Robillos T 2021 AIAA J. 59 11Google Scholar

    [16]

    Heineck J T, Banks D W, Schairer E T, Haering E A Jr., Bean P S 2016 AIAA Flight Testing Conference Washington, DC, USA, June 13–17, 2016 p11

    [17]

    李新亮 2015 航空学报 36 147Google Scholar

    Li X L 2015 Acta Aeronaut. ET Astronaut. Sin. 36 147Google Scholar

    [18]

    Yu C P, Hu R N, Yan Z, Li X L 2022 J. Fluid Mech. 940 A18Google Scholar

    [19]

    Hu R N, Li X L, Yu C P 2023 J. Fluid Mech. 972 A14Google Scholar

    [20]

    Hu R N, Li X L, Yu C P 2022 J. Fluid Mech. 946 A19Google Scholar

    [21]

    卞正富 2002 测量学 (北京: 中国农业出版社) 第17页

    Bian Z F 2002 Surveying (Beijing: China Agriculture Press) p17

    [22]

    黄金 2024 硕士学位论文 (西安: 西安理工大学)

    Huang J 2024 M. S. Dissertation (Xi’an: Xi’an University of Technology

    [23]

    崔洪鲁, 闫召爱, 张炳炎, 郭文杰, 胡雄 2020 空间科学学报 40 1046Google Scholar

    Cui H L, Yan Z, Zhang B Y, Guo W J, Hu X 2020 Chin. J. Space Sci. 40 1046Google Scholar

    [24]

    陈胜哲 2014 博士学位论文 (北京: 北京理工大学)

    Chen S Z 2014 Ph. D. Dissertation (Beijing: Beijing Institute of Technology

    [25]

    刘厚通, 陈良富, 苏林 2011 60 064204Google Scholar

    Liu H T, Chen L F, Su L 2011 Acta Phys. Sin. 60 064204Google Scholar

    [26]

    白珺, 袁艳, 苏丽娟, 孙成明 2012 现代电子技术 35 124Google Scholar

    Bai J, Yuan Y, Su L J, Sun C M 2012 Modern Electron. Tech. 35 124Google Scholar

    [27]

    马雪莲 2015 光子学报 44 0601003Google Scholar

    Ma X L 2015 Acta Photonica Sin. 44 0601003Google Scholar

    [28]

    陈武喝 1999 光电子·激光 10 375Google Scholar

    Chen W H 1999 J. Optoelectron. ·Laser 10 375Google Scholar

  • 图 1  大气扰动密度场云图分布

    Figure 1.  Distribution of atmospheric disturbance density field cloud map.

    图 2  扰动密度场侧视剖面图(以y = –1 m为例)

    Figure 2.  Side view profile of disturbance density field (taking y = –1 m as an example).

    图 3  扰动密度场垂向扩散分布曲线(以正视图中x = 50 m为例)

    Figure 3.  Vertical diffusion distribution curves of disturbance density field (taking x = 50 m in the front view as an example).

    图 4  扰动密度场纵向扩散分布曲线(以侧视图中y = –1 m为例)

    Figure 4.  Longitudinal diffusion distribution curves of disturbance density field (taking y = –1 m in the side view as an example).

    图 5  扰动密度场横向扩散分布曲线(以俯视图中z = 10 m为例)

    Figure 5.  Lateral diffusion distribution curves of disturbance density field (taking z = 10 m in the top view as an example).

    图 6  基于大气扰动密度场的探测原理示意图

    Figure 6.  Schematic diagram of detection principle based on atmospheric disturbance density field.

    图 7  大气扰动密度场光散射回波信号成像仿真模型框架和工作流程示意图

    Figure 7.  Schematic diagram of the framework and workflow of the imaging simulation model for light scattering echo signals in atmospheric disturbance density field.

    图 8  两种坐标系的关系

    Figure 8.  Relationship between the two coordinate systems.

    图 9  高差校正示意图[21]

    Figure 9.  Schematic diagram of height difference correction[21].

    图 10  二次散射作用计算原理示意图

    Figure 10.  Schematic diagram of the calculation principle of secondary scattering effect.

    图 11  二次散射作用贡献比重计算流程图

    Figure 11.  Flowchart of the calculation of contribution ratio of secondary scattering effect.

    图 12  邻近光线二次散射贡献比随距离的变化

    Figure 12.  Variation curve of the contribution ratio of secondary scattering from adjacent light rays with distance.

    图 13  大气扰动场光散射场回波信号成像示意图

    Figure 13.  Schematic diagram of echo signal imaging of light scattering field in atmospheric disturbance field.

    图 14  经短曝光大气MTF作用后的成像效果

    Figure 14.  Imaging effect after short-exposure atmospheric MTF.

    图 15  大气扰动密度场光散射层析成像探测结果图 (a), (c), (e)散射回波信号; (b), (d), (f) 与无扰动背景的差异

    Figure 15.  Tomographic imaging detection results of light scattering in atmospheric disturbance density field: (a), (c), (e) Scattering echo signals; (b), (d), (f) the differential images obtained by comparing disturbed and non-disturbed background.

    图 16  不同波长的成像探测结果图 (a), (c), (e)散射回波信号; (b), (d), (f)与无扰动背景的差异

    Figure 16.  Imaging detection results at different wavelengths: (a), (c), (e) Scattering echo signals; (b), (d), (f) the differential images obtained by comparing disturbed and non-disturbed backgrounds.

    图 17  不同轴向分辨率的成像探测结果图 (a), (c), (e)散射回波信号; (b), (d), (f)与无扰动背景的差异

    Figure 17.  Imaging detection results at different axial resolutions: (a), (c), (e) Scattering echo signals; (b), (d), (f) the differential images obtained by comparing disturbed and non-disturbed backgrounds.

    图 18  不同成像分辨率的成像探测结果图 (a), (c), (e)散射回波信号; (b), (d), (f)与无扰动背景的差异

    Figure 18.  Imaging detection results at different spatial resolutions: (a), (c), (e) Scattering echo signals; (b), (d), (f) the differential images obtained by comparing disturbed and non-disturbed backgrounds.

    Baidu
  • [1]

    任维贺, 张月, 苏云, 张学敏, 邓红艳, 柳祎 2022 红外与激光工程 51 20210843Google Scholar

    Ren W H, Zhang Y, Su Y, Zhang X M, Deng H Y, Liu Y 2022 Infrared and Laser Engineering 51 20210843Google Scholar

    [2]

    Pan W J, Jiang Y Q, Zhang Y Q 2023 Sustainability 15 6391Google Scholar

    [3]

    Wei Z Q, Li X C, Liu F 2022 Int. J. Aeronaut. Space Sci. 23 406Google Scholar

    [4]

    Liu Z R, Mao J M 2003 Chin. Phys. Lett. 20 206Google Scholar

    [5]

    潘卫军, 栾天, 康贤彪, 张庆宇, 任杰, 张强 2019 空气动力学学报 37 511Google Scholar

    Pan, W J, Luan, T, Kang, X, Zhang Q Y, Ren, J, Zhang, Q 2019 Acta Aerodyn. Sin. 37 511Google Scholar

    [6]

    Garnet M, Altman A 2009 J. Aircr. 46 263Google Scholar

    [7]

    Burnham D C, Hallock J N 2013 J. Aircr. 50 82Google Scholar

    [8]

    Köpp F, Rahm S, Smalikho I 2004 J. Atmos. Oceanic Technol. 21 194Google Scholar

    [9]

    Yoshikawa E, Matayoshi N 2017 AIAA J. 55 2269Google Scholar

    [10]

    Gao H, Li J B, Chan P W, Hon K K, Wang X S 2018 Opt. Express 26 16377Google Scholar

    [11]

    Marshall R E, Mudukutore A, Wissel V L H, Myers T 1998 Three-Centimeter Doppler Radar Observations of Wingtip-Generated Wake Vortices in Clear Air Report No. NASA/ CR-97-206260

    [12]

    武宇, 易仕和, 陈植, 张庆虎, 冈敦殿 2013 62 184702Google Scholar

    Wu Y, Yi S H, Chen Z, Zhang Q H, Gang D D 2013 Acta Phys. Sin. 62 184702Google Scholar

    [13]

    易仕和, 陈植 2015 64 199401Google Scholar

    Yi S, Chen Z 2015 Acta Phys. Sin. 64 199401Google Scholar

    [14]

    Sun Q, Cui W, Li Y H, Cheng B Q, Jin D, Li J 2014 Chin. Phys. B 23 075210Google Scholar

    [15]

    Heineck J T, Banks D W, Smith N T, Schairer E T, Bean P S, Robillos T 2021 AIAA J. 59 11Google Scholar

    [16]

    Heineck J T, Banks D W, Schairer E T, Haering E A Jr., Bean P S 2016 AIAA Flight Testing Conference Washington, DC, USA, June 13–17, 2016 p11

    [17]

    李新亮 2015 航空学报 36 147Google Scholar

    Li X L 2015 Acta Aeronaut. ET Astronaut. Sin. 36 147Google Scholar

    [18]

    Yu C P, Hu R N, Yan Z, Li X L 2022 J. Fluid Mech. 940 A18Google Scholar

    [19]

    Hu R N, Li X L, Yu C P 2023 J. Fluid Mech. 972 A14Google Scholar

    [20]

    Hu R N, Li X L, Yu C P 2022 J. Fluid Mech. 946 A19Google Scholar

    [21]

    卞正富 2002 测量学 (北京: 中国农业出版社) 第17页

    Bian Z F 2002 Surveying (Beijing: China Agriculture Press) p17

    [22]

    黄金 2024 硕士学位论文 (西安: 西安理工大学)

    Huang J 2024 M. S. Dissertation (Xi’an: Xi’an University of Technology

    [23]

    崔洪鲁, 闫召爱, 张炳炎, 郭文杰, 胡雄 2020 空间科学学报 40 1046Google Scholar

    Cui H L, Yan Z, Zhang B Y, Guo W J, Hu X 2020 Chin. J. Space Sci. 40 1046Google Scholar

    [24]

    陈胜哲 2014 博士学位论文 (北京: 北京理工大学)

    Chen S Z 2014 Ph. D. Dissertation (Beijing: Beijing Institute of Technology

    [25]

    刘厚通, 陈良富, 苏林 2011 60 064204Google Scholar

    Liu H T, Chen L F, Su L 2011 Acta Phys. Sin. 60 064204Google Scholar

    [26]

    白珺, 袁艳, 苏丽娟, 孙成明 2012 现代电子技术 35 124Google Scholar

    Bai J, Yuan Y, Su L J, Sun C M 2012 Modern Electron. Tech. 35 124Google Scholar

    [27]

    马雪莲 2015 光子学报 44 0601003Google Scholar

    Ma X L 2015 Acta Photonica Sin. 44 0601003Google Scholar

    [28]

    陈武喝 1999 光电子·激光 10 375Google Scholar

    Chen W H 1999 J. Optoelectron. ·Laser 10 375Google Scholar

Metrics
  • Abstract views:  2111
  • PDF Downloads:  62
  • Cited By: 0
Publishing process
  • Received Date:  28 February 2025
  • Accepted Date:  02 April 2025
  • Available Online:  24 April 2025
  • Published Online:  20 June 2025
  • /

    返回文章
    返回
    Baidu
    map