Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of energetic heavy ion sputtering on lifetime of alloy target

NI Weirong HUANG Hailong LU Xiaoyong WANG Xiaodong

Citation:

Influence of energetic heavy ion sputtering on lifetime of alloy target

NI Weirong, HUANG Hailong, LU Xiaoyong, WANG Xiaodong
cstr: 32037.14.aps.74.20240711
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • When energetic heavy ions are incident on negatively charged structure that collects and deposits ions, ion sputtering will occur. Metal wire is a structure commonly used for accelerating ions, the incidence of continuous high-throughput ions can cause surface loss of metal wire, affecting the service performance and lifespan of the metal wire. The SRIM software commonly used for calculating sputtering yield cannot consider the multi-body interaction problem contained in the alloy crystal structure. So, there is a significant error in calculating the sputtering yield of high-energy ions incident on alloy target. Based on the molecular dynamics method and Langevin temperature control model, the calculation model of ion sputtering parameters of energetic metal ions incident on alloy target is established in this work. The model is used to calculate the sputtering yield under the conditions of intact surface lattice of the target material and long-term incident surface lattice damage. The damages to the cathode metal wire under different incident ion fluences are further calculated, and the cross-sectional characterization of the metal wire is carried under typical working condition. The results show that the discrepancy between the experimental value and the theoretical value is less than 10%, which verifies the accuracy and applicability of the theoretical model. Based on this model, the search direction for sputtering resistant materials is proposed, meanwhile, a theoretical optimization is carried out to improve the service life of metal wire, and a method of using Ni-Ti alloy to improve the service life of metal wires is proposed, which is of great significance for predicting the service life of the metal wire under different conditions.
      Corresponding author: NI Weirong, nwr12@tsinghua.org.cn
    [1]

    田民波, 崔福斋 1987 物理 17 177Google Scholar

    Tian M B, Cui F Z 1987 Physics 17 177Google Scholar

    [2]

    张莱, 张竹林 2006 安徽理工大学学报 26 69Google Scholar

    Zhang L, Zhang Z L 2006 Journal of Anhui Univ. of Sci. and Tech. 26 69Google Scholar

    [3]

    李体军, 崔岁寒, 刘亮亮 李晓渊, 吴忠灿, 马正永, 傅劲裕, 田修波, 朱剑豪, 吴忠振 2021 70 045202Google Scholar

    Li T J, Cui S H, Liu L L, Li X Y, Wu Z X, Ma Z Y, Fu J Y, Tian X B, Zhu J H, Wu Z Z 2021 Acta Phys. Sin. 70 045202Google Scholar

    [4]

    陈畅子, 马东林, 李延涛, 冷永祥 2021 70 180701Google Scholar

    Chen C Z, Ma D L, Li Y T, Leng Y X 2021 Acta Phys. Sin. 70 180701Google Scholar

    [5]

    朱红莲, 王德武 2022 51 1338Google Scholar

    Zhu H L, Wang D W 2022 Acta Phys. Sin. 51 1338Google Scholar

    [6]

    谢国锋 2008 57 1784Google Scholar

    Xie G F 2008 Acta Phys. Sin. 57 1784Google Scholar

    [7]

    Ziegler J F, Ziegler M D, Biersack J P 2008 Nucl Instrum. Meth. B 268 1818Google Scholar

    [8]

    Sigmund P 1969 Phys. Rev. 184 383Google Scholar

    [9]

    邵其鋆, 霍裕昆, 陈建新, 吴士明, 潘正瑛 1991 40 659Google Scholar

    Shao Q Y, Huo Y K, Chen J X, Wu S M, Pan Z Y 1991 Acta Phys. Sin. 40 659Google Scholar

    [10]

    Mahne N, Cekada M, Panjan M 2022 Coatings 12 1541Google Scholar

    [11]

    樊康旗, 贾建援 2005 微纳电子技术 42 133Google Scholar

    Fan K Q, Jia J Y 2005 Micronanoelectr. Tech. 42 133Google Scholar

    [12]

    Lu H F, Zhang C, Zhang Q Y 2003 Nucl. Instrum. Meth. B 206 22Google Scholar

    [13]

    Pastewka L, Salzer R, Graff A 2009 Nucl. Instrum. Meth. B 267 3072Google Scholar

    [14]

    Jr M F R, Maazouz M, Giannuzzi L A 2008 Appl. Surf. Sci. 255 828Google Scholar

    [15]

    Feil H, Zwol J, Zwart S T, Dieleman J 1991 Phys. Rev. B 43 13695Google Scholar

    [16]

    Lopez-Cazalilla A, Cupak C, Fellinger M 2022 Phys. Rev. Mate. 6 075402Google Scholar

    [17]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [18]

    Tran H, Chew H B 2023 Carbon 205 180Google Scholar

    [19]

    颜超, 段军红, 何兴道 2011 60 088301Google Scholar

    Yan C, Duan J H, He X D 2011 Acta Phys. Sin. 60 088301Google Scholar

    [20]

    Nosé S 1984 J. Chem. Phys. 81 511Google Scholar

    [21]

    Slavinskaya N A 1998 Matem. Mod. 34 3Google Scholar

    [22]

    Daw M S, Foiles S M, Baskes M I 1993 Mater. Sci. Rep. 9 251Google Scholar

    [23]

    Ziegler J F 1988 Ion Implantation Technology (Berlin, Heidelberg: Springer) pp122–156

    [24]

    颜超, 黄莉莉, 何兴道 2014 63 126801Google Scholar

    Yan C, Huang L L, He X D 2014 Acta Phys. Sin. 63 126801Google Scholar

  • 图 1  Langevin控温法模型域划分示意图

    Figure 1.  Schematic diagram of Langevin method model division.

    图 2  不同入射角条件下的溅射产额曲线

    Figure 2.  Sputtering yield curves under different incident angles.

    图 3  初始状态(a)以及持续入射(b)后的316L不锈钢结构

    Figure 3.  Initial state (a) and continuous incidence (b) of 316L stainless steel structure.

    图 4  不同入射条件下316L不锈钢、625合金的溅射产额

    Figure 4.  Sputtering yield of 316L stainless steel and 625 alloy under different incident conditions.

    图 5  持续入射后的表面形貌

    Figure 5.  Surface morphology after continuous incidence.

    图 6  金属丝截面随入射离子总量变化曲线

    Figure 6.  Cross sections of metal wires with different total incident ions.

    图 7  金属丝表面形貌SEM结果

    Figure 7.  Surface morphology of metal wire using SEM.

    图 8  Ni-Ti合金与625合金、316L不锈钢溅射产额对比

    Figure 8.  Sputtering yield of Ni-Ti alloy, 625 alloy, and 316L stainless steel.

    图 9  Ni-Ti合金金属丝截面随入射离子总量变化

    Figure 9.  Cross sections of Ni-Ti alloy wires with different total incident ions.

    表 1  金属丝寿命计算入射条件

    Table 1.  Calculation conditions for the life of metal wires.

    入射条件 初始值
    入射元素
    入射能量/keV 9
    入射方向与金属丝平面夹角/(°) 10
    入射离子通量/(s–1·cm–2) 2.1×1015
    靶材 625合金
    金属丝初始直径/mm 0.5
    DownLoad: CSV
    Baidu
  • [1]

    田民波, 崔福斋 1987 物理 17 177Google Scholar

    Tian M B, Cui F Z 1987 Physics 17 177Google Scholar

    [2]

    张莱, 张竹林 2006 安徽理工大学学报 26 69Google Scholar

    Zhang L, Zhang Z L 2006 Journal of Anhui Univ. of Sci. and Tech. 26 69Google Scholar

    [3]

    李体军, 崔岁寒, 刘亮亮 李晓渊, 吴忠灿, 马正永, 傅劲裕, 田修波, 朱剑豪, 吴忠振 2021 70 045202Google Scholar

    Li T J, Cui S H, Liu L L, Li X Y, Wu Z X, Ma Z Y, Fu J Y, Tian X B, Zhu J H, Wu Z Z 2021 Acta Phys. Sin. 70 045202Google Scholar

    [4]

    陈畅子, 马东林, 李延涛, 冷永祥 2021 70 180701Google Scholar

    Chen C Z, Ma D L, Li Y T, Leng Y X 2021 Acta Phys. Sin. 70 180701Google Scholar

    [5]

    朱红莲, 王德武 2022 51 1338Google Scholar

    Zhu H L, Wang D W 2022 Acta Phys. Sin. 51 1338Google Scholar

    [6]

    谢国锋 2008 57 1784Google Scholar

    Xie G F 2008 Acta Phys. Sin. 57 1784Google Scholar

    [7]

    Ziegler J F, Ziegler M D, Biersack J P 2008 Nucl Instrum. Meth. B 268 1818Google Scholar

    [8]

    Sigmund P 1969 Phys. Rev. 184 383Google Scholar

    [9]

    邵其鋆, 霍裕昆, 陈建新, 吴士明, 潘正瑛 1991 40 659Google Scholar

    Shao Q Y, Huo Y K, Chen J X, Wu S M, Pan Z Y 1991 Acta Phys. Sin. 40 659Google Scholar

    [10]

    Mahne N, Cekada M, Panjan M 2022 Coatings 12 1541Google Scholar

    [11]

    樊康旗, 贾建援 2005 微纳电子技术 42 133Google Scholar

    Fan K Q, Jia J Y 2005 Micronanoelectr. Tech. 42 133Google Scholar

    [12]

    Lu H F, Zhang C, Zhang Q Y 2003 Nucl. Instrum. Meth. B 206 22Google Scholar

    [13]

    Pastewka L, Salzer R, Graff A 2009 Nucl. Instrum. Meth. B 267 3072Google Scholar

    [14]

    Jr M F R, Maazouz M, Giannuzzi L A 2008 Appl. Surf. Sci. 255 828Google Scholar

    [15]

    Feil H, Zwol J, Zwart S T, Dieleman J 1991 Phys. Rev. B 43 13695Google Scholar

    [16]

    Lopez-Cazalilla A, Cupak C, Fellinger M 2022 Phys. Rev. Mate. 6 075402Google Scholar

    [17]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [18]

    Tran H, Chew H B 2023 Carbon 205 180Google Scholar

    [19]

    颜超, 段军红, 何兴道 2011 60 088301Google Scholar

    Yan C, Duan J H, He X D 2011 Acta Phys. Sin. 60 088301Google Scholar

    [20]

    Nosé S 1984 J. Chem. Phys. 81 511Google Scholar

    [21]

    Slavinskaya N A 1998 Matem. Mod. 34 3Google Scholar

    [22]

    Daw M S, Foiles S M, Baskes M I 1993 Mater. Sci. Rep. 9 251Google Scholar

    [23]

    Ziegler J F 1988 Ion Implantation Technology (Berlin, Heidelberg: Springer) pp122–156

    [24]

    颜超, 黄莉莉, 何兴道 2014 63 126801Google Scholar

    Yan C, Huang L L, He X D 2014 Acta Phys. Sin. 63 126801Google Scholar

Metrics
  • Abstract views:  2660
  • PDF Downloads:  188
  • Cited By: 0
Publishing process
  • Received Date:  21 May 2024
  • Accepted Date:  11 November 2024
  • Available Online:  02 December 2024
  • Published Online:  05 January 2025
  • /

    返回文章
    返回
    Baidu
    map