Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Heat transfer characteristics of solid-liquid interface on nanostructure surface under external electric field

Qi Kai Zhu Xing-Guang Wang Jun Xia Guo-Dong

Citation:

Heat transfer characteristics of solid-liquid interface on nanostructure surface under external electric field

Qi Kai, Zhu Xing-Guang, Wang Jun, Xia Guo-Dong
cstr: 32037.14.aps.73.20240698
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • With the size of high-performance electronic device decreasing (down to nanoscale), and the accompanying heat dissipation becomes a big problem due to its extremely high heat generation density. To tackle the ever-demanding heat dissipation requirement, intensive work has been done to develop techniques for chip-level cooling. Among the techniques reported in the literature, liquid cooling appears to be a good candidate for cooling high-performance electronic devices. However, when the device size is reduced to the sub-micro or nanometer level, the thermal resistance on the solid-liquid interface cannot be ignored in the heat transfer process. Usually, the interfacial thermal transport can be enhanced by using nanostructures on the solid surface because of the confinement effect of the fluid molecules filling up the nano-grooves and the increase of the solid-liquid interfacial contact area. However, in the case of weak interfacial couplings, the fluid molecules cannot enter into the nano-grooves and the interfacial thermal transport is suppressed. In the present work, the heat transfer system between two parallel metal plates filled with deionized water is investigated by molecular dynamics simulation. Electronic charges are applied to the upper plate and lower plate to create a uniform electric field that is perpendicular to the surface, and three types of nanostructures with varying size are arranged on the lower plate. It is found that the wetting state at the solid-liquid interface can change from Cassie state into Wenzel state with strength of the electric field increasing. Owing to the transition from the dewetting state to wetting state (from Wenzel to Cassie wetting state), the Kapitza length can be degraded and the solid-liquid interfacial heat transfer can be enhanced. The mechanism of the enhancing hart transfer is discussed based on the calculation of the number density distribution of the water molecules between the two plates. When the charge is further increased, electrofreezing appears, and a solid hydrogen bonding network is formed in the system, resulting in the thermal conductivity increasing to 1.2 W/(m·K) while the thermal conductivity remains almost constant when the electric charge continues to increase.
      Corresponding author: Wang Jun, jwang@bjut.edu.cn
    [1]

    Razeeb K M, Dalton E, Cross G L W, Robinson A J 2018 Int. Mater. 63 1Google Scholar

    [2]

    Pop E 2010 Nano Res. 3 147Google Scholar

    [3]

    Kapitza P L 1971 J. Phys. U.S.S.R. 4 181Google Scholar

    [4]

    Shenogina N, Godawat R, Keblinski P, Garde S 2009 Phys. Rev. Lett. 102 156101Google Scholar

    [5]

    Harikrishna H, Ducker W A, Huxtable S T 2013 Appl. Phys. Lett. 102 251606Google Scholar

    [6]

    Park S C, Cho H R, Kim D, Choi S H, Choi C, Yu D I 2024 Int. J. Heat Fluid Flow 107 109388Google Scholar

    [7]

    Song G, Min C 2013 Mol. Phys. 111 903Google Scholar

    [8]

    Rashidi M M, Ghahremanian S, Toghraie D, Roy P 2020 Int. Commun. Heat Mass 117 140741Google Scholar

    [9]

    张程宾, 许兆林, 陈永平 2014 63 214706Google Scholar

    Zhang C B, Xu Z L, Chen Y P 2014 Acta Phys. Sin. 63 214706Google Scholar

    [10]

    Chakraborty P, Ma T, Cao L, Wang Y 2019 Int. J. Heat Mass. Tran. 136 702Google Scholar

    [11]

    Yao S T, Wang J S, Jin S F, Tan F G, Chen S P 2024 Int. J. Therm. Sci. 203 109161Google Scholar

    [12]

    Qin S Y, Chen Z X, Wang Q, Li W G, Xing H W 2024 Int. Commun. Heat Mass 151 107257Google Scholar

    [13]

    Cassie A B D 1948 Disscussions of the Faraday Society 3 11Google Scholar

    [14]

    Wenzel R N 1936 Ind. Eng. Chem. 28 988Google Scholar

    [15]

    Bormashenko E 2015 Adv. Colloid Interface Sci. 222 92Google Scholar

    [16]

    Bormashenko E, Pogreb R, Stein T, Whyman G, Erlich M, Musin A, Machavariani V, Aurbach D 2008 Phys. Chem. Chem. Phys 10 4056Google Scholar

    [17]

    李文, 马骁婧, 徐进良, 王艳, 雷骏鹏 2015 70 126101Google Scholar

    Li W, Ma X J, Xu J L, Wang Y, Lei J P 2015 Acta Phys. Sin. 70 126101Google Scholar

    [18]

    Sur A, Lu Y, Pascente C, Ruchhoeft P, Liu D 2018 Int. J. Heat Mass Tran. 120 202Google Scholar

    [19]

    Lippmann G 1875 Ann. de Chim. et de Phys. 5 494 (in Chinese)

    [20]

    Orejon D, Sefiane K, Shanahan M E 2013 Appl. Phys. Lett. 102 201601Google Scholar

    [21]

    Daub C D, Bratko D, Leung K, Luzar A 2007 J. Phys. Chem. C 111 505Google Scholar

    [22]

    Song F H, Li B Q, Liu C 2013 Langmuir 29 4266Google Scholar

    [23]

    Lee M W, Latthe S S, Yarin A L, Yoon S S 2013 Langmuir 29 7758Google Scholar

    [24]

    Zhang B X, Wang S L, He X, Yang Y R, Wang X D, Lee D J 2021 J. Mol. Liq. 342 117468Google Scholar

    [25]

    Luedtke W D, Gao J P, Landman U 2011 J. Phys. Chem. C 115 20343Google Scholar

    [26]

    Zhu X Y, Yuan Q Z, Zhao Y P 2014 Nanoscale 6 5432Google Scholar

    [27]

    Sun W, Xu X B, Zhang H, Xu C X 2008 Cryobiology 56 93Google Scholar

    [28]

    Zangi R, Mark A E 2004 J. Chem. Phys. 120 7123Google Scholar

    [29]

    Jinesh K B, Frenken J W M 2008 Phys. Rev. Lett. 101 036101Google Scholar

    [30]

    Ahmad I, Ranjan A, Pathak M, Khan M K 2023 Int. J. Therm. Sci. 192 108440Google Scholar

    [31]

    Lu Y, Liu D 2023 Int J Heat Mass Tran. 208 124055Google Scholar

    [32]

    胡剑, 张森, 娄钦 2023 72 176401Google Scholar

    Hu J, Zhang S, Lou Q 2023 Acta Phys. Sin. 72 176401Google Scholar

    [33]

    Mugele F, Baret J C 2005 J. Phys.: Condens. Matter 17 R705Google Scholar

    [34]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [35]

    Yenigun O, Barisik M 2019 Nanoscale Microscale Thermophys. Eng 4 304Google Scholar

  • 图 1  纳米结构界面的固-液传热系统模型

    Figure 1.  Heat transfer system at nanostructured interface.

    图 2  纳米结构界面的结构示意图

    Figure 2.  Structure diagram of nanostructured interface

    图 3  Case1, Case 2, Case 3和Case 4 在不同电荷量下的系统快照图

    Figure 3.  Snapshots of Case 1, Case 2, Case 3 and Case 4 at different electrode charges.

    图 4  Case 1和Case 3在不同电荷量下的密度分布 (a), (b) Case 1; (c), (d) Case 3

    Figure 4.  Density distribution of Case 1 and Case 3 at different electrode charges: (a), (b) Case 1; (c), (d) Case 3.

    图 5  Case 1和Case 3在不同电荷量下的温度分布

    Figure 5.  Temperature distribution of Case 1 and Case 3 at different electrode charges.

    图 6  Case1, Case 2, Case 3和 Case 4 在不同电荷量下的LK  (a)高温端; (b)低温端

    Figure 6.  Kapitza length of Case 1, Case 2, Case 3 and Case 4 at different electrode charges: (a) High-temperature end; (b) low-temperature end.

    图 7  在不同电荷量下Case 1, Case 2, Case 3和 Case 4中水的热导率

    Figure 7.  Thermal conductivity of waters of Case 1, Case 2, Case 3 and Case 4 at different electrode charges.

    图 8  在不同电荷量下Case 1, Case 2, Case 3和 Case 4中水的热流密度

    Figure 8.  Heat flux of waters of Case 1, Case 2, Case 3 and Case 4 at different electrode charges.

    表 1  4种纳米结构的参数

    Table 1.  Parameters of four nanogroove configurations.

    d/nmw/nms/nm
    Case 1
    Case 21.020.8160.816
    Case 31.021.021.02
    Case 41.022.042.04
    DownLoad: CSV

    表 2  L-J势函数的具体参数

    Table 2.  Parameters of L-J potential.

    原子类型 σ/nm ε/eV q
    O-O 0.3166 0.0068 –0.8476e
    H-H 0 0 +0.4238e
    Au-O 0.2867 0.0114
    Au-H 0 0
    DownLoad: CSV
    Baidu
  • [1]

    Razeeb K M, Dalton E, Cross G L W, Robinson A J 2018 Int. Mater. 63 1Google Scholar

    [2]

    Pop E 2010 Nano Res. 3 147Google Scholar

    [3]

    Kapitza P L 1971 J. Phys. U.S.S.R. 4 181Google Scholar

    [4]

    Shenogina N, Godawat R, Keblinski P, Garde S 2009 Phys. Rev. Lett. 102 156101Google Scholar

    [5]

    Harikrishna H, Ducker W A, Huxtable S T 2013 Appl. Phys. Lett. 102 251606Google Scholar

    [6]

    Park S C, Cho H R, Kim D, Choi S H, Choi C, Yu D I 2024 Int. J. Heat Fluid Flow 107 109388Google Scholar

    [7]

    Song G, Min C 2013 Mol. Phys. 111 903Google Scholar

    [8]

    Rashidi M M, Ghahremanian S, Toghraie D, Roy P 2020 Int. Commun. Heat Mass 117 140741Google Scholar

    [9]

    张程宾, 许兆林, 陈永平 2014 63 214706Google Scholar

    Zhang C B, Xu Z L, Chen Y P 2014 Acta Phys. Sin. 63 214706Google Scholar

    [10]

    Chakraborty P, Ma T, Cao L, Wang Y 2019 Int. J. Heat Mass. Tran. 136 702Google Scholar

    [11]

    Yao S T, Wang J S, Jin S F, Tan F G, Chen S P 2024 Int. J. Therm. Sci. 203 109161Google Scholar

    [12]

    Qin S Y, Chen Z X, Wang Q, Li W G, Xing H W 2024 Int. Commun. Heat Mass 151 107257Google Scholar

    [13]

    Cassie A B D 1948 Disscussions of the Faraday Society 3 11Google Scholar

    [14]

    Wenzel R N 1936 Ind. Eng. Chem. 28 988Google Scholar

    [15]

    Bormashenko E 2015 Adv. Colloid Interface Sci. 222 92Google Scholar

    [16]

    Bormashenko E, Pogreb R, Stein T, Whyman G, Erlich M, Musin A, Machavariani V, Aurbach D 2008 Phys. Chem. Chem. Phys 10 4056Google Scholar

    [17]

    李文, 马骁婧, 徐进良, 王艳, 雷骏鹏 2015 70 126101Google Scholar

    Li W, Ma X J, Xu J L, Wang Y, Lei J P 2015 Acta Phys. Sin. 70 126101Google Scholar

    [18]

    Sur A, Lu Y, Pascente C, Ruchhoeft P, Liu D 2018 Int. J. Heat Mass Tran. 120 202Google Scholar

    [19]

    Lippmann G 1875 Ann. de Chim. et de Phys. 5 494 (in Chinese)

    [20]

    Orejon D, Sefiane K, Shanahan M E 2013 Appl. Phys. Lett. 102 201601Google Scholar

    [21]

    Daub C D, Bratko D, Leung K, Luzar A 2007 J. Phys. Chem. C 111 505Google Scholar

    [22]

    Song F H, Li B Q, Liu C 2013 Langmuir 29 4266Google Scholar

    [23]

    Lee M W, Latthe S S, Yarin A L, Yoon S S 2013 Langmuir 29 7758Google Scholar

    [24]

    Zhang B X, Wang S L, He X, Yang Y R, Wang X D, Lee D J 2021 J. Mol. Liq. 342 117468Google Scholar

    [25]

    Luedtke W D, Gao J P, Landman U 2011 J. Phys. Chem. C 115 20343Google Scholar

    [26]

    Zhu X Y, Yuan Q Z, Zhao Y P 2014 Nanoscale 6 5432Google Scholar

    [27]

    Sun W, Xu X B, Zhang H, Xu C X 2008 Cryobiology 56 93Google Scholar

    [28]

    Zangi R, Mark A E 2004 J. Chem. Phys. 120 7123Google Scholar

    [29]

    Jinesh K B, Frenken J W M 2008 Phys. Rev. Lett. 101 036101Google Scholar

    [30]

    Ahmad I, Ranjan A, Pathak M, Khan M K 2023 Int. J. Therm. Sci. 192 108440Google Scholar

    [31]

    Lu Y, Liu D 2023 Int J Heat Mass Tran. 208 124055Google Scholar

    [32]

    胡剑, 张森, 娄钦 2023 72 176401Google Scholar

    Hu J, Zhang S, Lou Q 2023 Acta Phys. Sin. 72 176401Google Scholar

    [33]

    Mugele F, Baret J C 2005 J. Phys.: Condens. Matter 17 R705Google Scholar

    [34]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [35]

    Yenigun O, Barisik M 2019 Nanoscale Microscale Thermophys. Eng 4 304Google Scholar

Metrics
  • Abstract views:  4630
  • PDF Downloads:  143
  • Cited By: 0
Publishing process
  • Received Date:  17 May 2024
  • Accepted Date:  15 June 2024
  • Available Online:  26 June 2024
  • Published Online:  05 August 2024
  • /

    返回文章
    返回
    Baidu
    map