Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Magnetic field suppression characteristics in interaction process between shock wave and light gas cylinder

Zhang Sheng-Bo Zhang Huan-Hao Zhang Jun Mao Yong-Jian Chen Zhi-Hua Shi Qi-Chen Zheng Chun

Citation:

Magnetic field suppression characteristics in interaction process between shock wave and light gas cylinder

Zhang Sheng-Bo, Zhang Huan-Hao, Zhang Jun, Mao Yong-Jian, Chen Zhi-Hua, Shi Qi-Chen, Zheng Chun
cstr: 32037.14.aps.73.20231916
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Based on ideal compressible magnetohydrodynamics (MHD) equations, the interface instabilities induced by the interaction between planar shock wave and the light gas (Helium) cylinder under the influence of the magnetic fields with different directions are investigated numerically by using the CTU(corner transport upwind)+CT (constrained transport) algorithm. The numerical results elucidate the evolution of flow field characteristics and wave structures with and without magnetic field. Moreover, we examine the influence of the magnetic field direction on a characteristic scales (including the length, height and width of the central axis of gas cylinder), as well as the volume compressibility. Then, the mechanism of the magnetic field direction affecting the interface instability is studied in depth by integrating the analyses of the circulation, energy, velocity and magnetic force distribution within the flow field. The core of this study, is to explore the suppression mechanism of interface instability by magnetic field force. The results show that the magnetic pressure plays a crucial role in driving vorticity away from the interface, thereby reducing its deposition on the density interface. Simultaneously, it adheres to the divided vortex layer, thereby effectively isolating the influence of Richtmyer-Meshkov instability on the interface. On the other hand, the magnetic tension adheres to the separated vortex layer, and its direction is opposite to that of the vorticity generated by the shear of interface velocity. This action effectively suppresses the Kelvin-Helmholtz instability and the rolling-up of vortices on the density interface. Additionally, under the control of a longitudinal magnetic field, the direction of magnetic tension is opposite to the direction of the central jet, effectively suppressing the development of Rayleigh-Taylor instability.
      Corresponding author: Zhang Huan-Hao, zhanghuanhao@njsut.edu.cn ; Chen Zhi-Hua, chenzh@njust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12072162, 12102196, 12072334), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20210322), and the China Postdoctoral Science Foundation (Grant No. 2022M711642).
    [1]

    Richtmyer R D 1960 Commun. Pure Appl. Math. 13 297Google Scholar

    [2]

    Meshkov E E 1969 Fluid Dyn. 4 101

    [3]

    Kelvin L 1871 Philos. Mag. 42 362Google Scholar

    [4]

    Helmholtz H V 1868 Monthly Reports of the Royal Prussian Academy of Philosophy in Berlin 23 215

    [5]

    Rayleigh L 1882 Proc. R. Math. Soc. s1-14 170Google Scholar

    [6]

    Taylor S G 1950 Proc. R Soc. London Ser. A 201 192Google Scholar

    [7]

    Zheng C, Zhang H H, Chen Z H, Wu W T, Sha S 2019 Phys. Fluids 31 086104Google Scholar

    [8]

    林震亚, 张焕好, 陈志华, 刘 迎 2017 爆炸与冲击 37 748Google Scholar

    Lin Z Y, Zhang H H, Chen Z H, Liu Y 2017 Explo. Shock Waves 37 748Google Scholar

    [9]

    Haas J F, Sturtevant B 1987 J. Fluid Mech. 181 41Google Scholar

    [10]

    Jacobs J 1993 Phys. Fluids 5 2239Google Scholar

    [11]

    Layes G, Metayer O L 2007 Phys. Fluids 19 042105Google Scholar

    [12]

    Jacobs J and Krivets V 2005 Phys. Fluids 17 034105Google Scholar

    [13]

    Zhai Z G, Wang M H, Si T, Luo X S 2014 J. Fluid Mech. 757 800Google Scholar

    [14]

    Wang X S, Yang D G, Wu J Q, Luo X S 2015 Phys. Fluids 27 064104Google Scholar

    [15]

    Bai J S, Zou L Y, Wang T, Liu K, Huang W B, Liu J G, Li P, Tan D W, Liu C L 2010 Phys. Rev. E 82 056318Google Scholar

    [16]

    Si T, Long T, Zhai Z G, Luo X S 2015 J. Fluid Mech. 784 225Google Scholar

    [17]

    Luo X S, Ding J C, Wang M H, Zhai Z G, Si T 2015 Phys. Fluids 27 091702Google Scholar

    [18]

    Lei F, Ding J C, Si T, Zhai Z G, Luo X S 2017 J. Fluid Mech. 826 819Google Scholar

    [19]

    Ding J C, Si T, Yang J M, Lu X Y, Zhai Z G, Luo X S 2017 Phys. Rev. Lett. 119 014501Google Scholar

    [20]

    Liang Y, Ding J C, Zhai Z G, Si T, Luo X S 2017 Phys. Fluids 29 086101Google Scholar

    [21]

    李冬冬, 王革, 张斌 2018 67 184702Google Scholar

    Li D D, Wang G, Zhang B 2018 Acta Phys. Sin. 67 184702Google Scholar

    [22]

    Guo X, Zhai Z G, Si T, Luo X S 2019 Phys. Rev. Fluids 4 092001(R

    [23]

    王显圣, 司廷, 罗喜盛, 杨基明 2012 力学学报 44 664Google Scholar

    Wang X S, Si T, Luo X S, Yang J M 2012 Acta Mech. Sin. 44 664Google Scholar

    [24]

    张升博, 张焕好, 陈志华, 郑纯 2023 72 105202Google Scholar

    Zhang S B, Zhang H H, Chen Z H, Zheng C 2023 Acta Phys. Sin. 72 105202Google Scholar

    [25]

    Zhang S B, Zhang H H, Chen Z H, Zheng C 2023 Phys. Plasmas 30 022107Google Scholar

    [26]

    Samtaney R 2003 Phys. Fluids 15 53Google Scholar

    [27]

    Wheatley V, Samtaney R, Pullin D I, Gehre R M 2014 Phys. Fluids 26 016102Google Scholar

    [28]

    Sano T 2021 Astrophys. J. 920 29Google Scholar

    [29]

    李源, 罗喜胜 2014 计算物理 31 659Google Scholar

    Li Y, Luo X S 2014 Chin. J. Comput. Phys. 31 659Google Scholar

    [30]

    Qiu Z Y, Wu Z W, Cao J T, Li D 2008 Phys. Plasmas 15 042305Google Scholar

    [31]

    Tapinou K C, Wheatley V, Bond D, Jahn I 2023 Phys. Plasmas 30 022707Google Scholar

    [32]

    Tapinou K C, Wheatley V, Bond D 2023 J. Fluid Mech. 977 A19Google Scholar

    [33]

    Rinderknecht H G, Amendt P, Wilks S, Collins G 2018 Plasma Phys. Controlled Fusion 60 064001Google Scholar

    [34]

    Xu A G, Zhang G C, Gan Y B, Chen F, Yu X J 2012 Front. Phys. 7 582Google Scholar

    [35]

    Gan Y B, Xu A G, Lai H L, Li W, Sun G L, Succi S 2022 J. Fluid Mech. 951 A8Google Scholar

    [36]

    Zhang D J, Xu A G, Zhang Y D, Gan Y B, Li Y J 2022 Phys. Fluids 34 086104Google Scholar

    [37]

    Zhang Y D, Xu A G, Chen F, Lin C D, Wei Z H 2022 AIP Adv. 12 035347Google Scholar

    [38]

    Song J H, Xu A G, Miao l, Chen F, Liu Z P, Wang L F, Wang N F, Hou X 2024 Phys. Fluids 36 016107Google Scholar

    [39]

    沙莎, 张焕好, 陈志华, 郑纯, 吴威涛, 石启陈 2020 69 184701Google Scholar

    Sha S, Zhang H H, Chen Z H, Zheng C, Wu W T, Shi Q C 2020 Acta Phys. Sin. 69 184701Google Scholar

    [40]

    Zhang H H, Zheng C, Aubry N, Wu W T, Chen Z H 2020 Phys. Fluids 32 116104Google Scholar

    [41]

    Colella P 1990 J. Comput. Phys. 87 171Google Scholar

    [42]

    Londrillo P, Zanna L D 2004 J. Comput. Phys. 195 17Google Scholar

    [43]

    Shin M, Stone J M, Snyder G F 2008 Astrophys. J. 680 336Google Scholar

    [44]

    Saltzman J 1994 J. Comput. Phys. 115 153Google Scholar

    [45]

    Colella P, Woodward P 1984 J. Comput. Phys. 54 17

    [46]

    Evans C, Hawley J 1988 Astrophys J. 322 659

    [47]

    Lin Z Y, Zhang H H, Chen Z H, Liu Y, Hong Y J 2017 Int. J. Comput. Fluid D. 31 21Google Scholar

    [48]

    Giordano J, Burtschell Y 2006 Phys. Fluids. 18 036102Google Scholar

  • 图 1  (a) 仿真模型; (b) 氦气组分沿y = 0的分布

    Figure 1.  (a) Simulation model; (b) distribution of helium components along y = 0.

    图 2  平面激波与He气柱作用过程的计算结果(下)与相关实验结果[9](上)的对比

    Figure 2.  Comparison between simulation results of this study (down) and experimental results [9] (up) for the interaction between a shock wave and a helium gas cylinder.

    图 3  无磁场控制下, 激波冲击He气柱过程的阴影图

    Figure 3.  Shadowgraph images for the interaction of a shock wave with a helium cylinder in HD condition.

    图 4  流向磁场作用下, 激波冲击He气柱过程的阴影图

    Figure 4.  Shadowgraph images for interaction of a shock wave with a helium cylinder in the presence of a transverse magnetic field.

    图 5  纵向磁场作用下, 激波冲击He气柱过程的阴影图

    Figure 5.  Shadowgraph images for the interaction of a shock wave with a helium cylinder in the presence of a longitudinal magnetic field.

    图 6  不同磁场方向下的流场涡量分布

    Figure 6.  Vorticity contour in RMI under various magnetic-field directions.

    图 7  环量随时间的变化曲线 (a) 正环量Γ+; (b) 负环量Γ; (c) 总环量Γ

    Figure 7.  History of the circulation: (a) Positive circulation Γ+; (b) negative circulation Γ; (c) total circulation Γ.

    图 8  激波冲击氦气柱过程中气柱特征尺寸的变化曲线 (a)气柱长度L; (b)气柱高度H; (c)中轴宽度W

    Figure 8.  The variation curves of characteristic dimensions of helium cylinder during the interaction process with the shock wave: (a) Length of helium cylinder, L; (b) height of helium cylinder, H; (c) axis width of helium cylinder, W.

    图 9  不同磁场方向下, He气柱体积压缩率V(t)/V(0)变化

    Figure 9.  Volume compressibility of He cylinder for various magnetic-field directions.

    图 10  流场能量随时间的变化曲线 (a) 总能E、内能Ep ; (b) 磁能Eb; (c) 横向总动能Ekx; (d) 纵向总动能Eky

    Figure 10.  Time history of the flow energy: (a) Total energy E, internal energy Ep; (b) magnetic energy Eb; (c) lateral total kinetic energy Ekx; (d) vertical total kinetic energy Eky.

    图 11  内能分布随时间的变化

    Figure 11.  Distribution of internal energy over time.

    图 12  t = 0.15 ms时, 流场磁场强度与磁能量的分布云图

    Figure 12.  The distribution of magnetic field strength and magnetic energy in the flow field at t = 0.15 ms.

    图 13  氦气柱附近速度矢量分布图

    Figure 13.  Velocity vector distribution near the He cylinder.

    图 14  涡量层上的磁张力和磁压力分布

    Figure 14.  Magnetic tension and magnetic pressure distributions on the vorticity layers.

    图 15  纵向动能分布(upper)和涡量(lower)对照图

    Figure 15.  Comparison of longitudinal kinetic energy distribution (upper) with vorticity (lower).

    表 1  气体参数

    Table 1.  Gas parameters.

    Gas Density
    ρ/(kg·m–3)
    Specific-heat ratio γ Molar mass
    M/(g·mol–1)
    Speed of sound
    cA/(m·s–1)
    Air 1.176 1.40 28.96 347
    He 0.162 1.67 4.00 1021
    DownLoad: CSV

    表 2  不同工况下的初始条件

    Table 2.  The initial conditions of different cases.

    Case a $\beta^{-1}$ Magnetic field direction
    1 0.8 0
    2 0.8 0.0005 Transverse
    3 0.8 0.0005 Longitudinal
    DownLoad: CSV
    Baidu
  • [1]

    Richtmyer R D 1960 Commun. Pure Appl. Math. 13 297Google Scholar

    [2]

    Meshkov E E 1969 Fluid Dyn. 4 101

    [3]

    Kelvin L 1871 Philos. Mag. 42 362Google Scholar

    [4]

    Helmholtz H V 1868 Monthly Reports of the Royal Prussian Academy of Philosophy in Berlin 23 215

    [5]

    Rayleigh L 1882 Proc. R. Math. Soc. s1-14 170Google Scholar

    [6]

    Taylor S G 1950 Proc. R Soc. London Ser. A 201 192Google Scholar

    [7]

    Zheng C, Zhang H H, Chen Z H, Wu W T, Sha S 2019 Phys. Fluids 31 086104Google Scholar

    [8]

    林震亚, 张焕好, 陈志华, 刘 迎 2017 爆炸与冲击 37 748Google Scholar

    Lin Z Y, Zhang H H, Chen Z H, Liu Y 2017 Explo. Shock Waves 37 748Google Scholar

    [9]

    Haas J F, Sturtevant B 1987 J. Fluid Mech. 181 41Google Scholar

    [10]

    Jacobs J 1993 Phys. Fluids 5 2239Google Scholar

    [11]

    Layes G, Metayer O L 2007 Phys. Fluids 19 042105Google Scholar

    [12]

    Jacobs J and Krivets V 2005 Phys. Fluids 17 034105Google Scholar

    [13]

    Zhai Z G, Wang M H, Si T, Luo X S 2014 J. Fluid Mech. 757 800Google Scholar

    [14]

    Wang X S, Yang D G, Wu J Q, Luo X S 2015 Phys. Fluids 27 064104Google Scholar

    [15]

    Bai J S, Zou L Y, Wang T, Liu K, Huang W B, Liu J G, Li P, Tan D W, Liu C L 2010 Phys. Rev. E 82 056318Google Scholar

    [16]

    Si T, Long T, Zhai Z G, Luo X S 2015 J. Fluid Mech. 784 225Google Scholar

    [17]

    Luo X S, Ding J C, Wang M H, Zhai Z G, Si T 2015 Phys. Fluids 27 091702Google Scholar

    [18]

    Lei F, Ding J C, Si T, Zhai Z G, Luo X S 2017 J. Fluid Mech. 826 819Google Scholar

    [19]

    Ding J C, Si T, Yang J M, Lu X Y, Zhai Z G, Luo X S 2017 Phys. Rev. Lett. 119 014501Google Scholar

    [20]

    Liang Y, Ding J C, Zhai Z G, Si T, Luo X S 2017 Phys. Fluids 29 086101Google Scholar

    [21]

    李冬冬, 王革, 张斌 2018 67 184702Google Scholar

    Li D D, Wang G, Zhang B 2018 Acta Phys. Sin. 67 184702Google Scholar

    [22]

    Guo X, Zhai Z G, Si T, Luo X S 2019 Phys. Rev. Fluids 4 092001(R

    [23]

    王显圣, 司廷, 罗喜盛, 杨基明 2012 力学学报 44 664Google Scholar

    Wang X S, Si T, Luo X S, Yang J M 2012 Acta Mech. Sin. 44 664Google Scholar

    [24]

    张升博, 张焕好, 陈志华, 郑纯 2023 72 105202Google Scholar

    Zhang S B, Zhang H H, Chen Z H, Zheng C 2023 Acta Phys. Sin. 72 105202Google Scholar

    [25]

    Zhang S B, Zhang H H, Chen Z H, Zheng C 2023 Phys. Plasmas 30 022107Google Scholar

    [26]

    Samtaney R 2003 Phys. Fluids 15 53Google Scholar

    [27]

    Wheatley V, Samtaney R, Pullin D I, Gehre R M 2014 Phys. Fluids 26 016102Google Scholar

    [28]

    Sano T 2021 Astrophys. J. 920 29Google Scholar

    [29]

    李源, 罗喜胜 2014 计算物理 31 659Google Scholar

    Li Y, Luo X S 2014 Chin. J. Comput. Phys. 31 659Google Scholar

    [30]

    Qiu Z Y, Wu Z W, Cao J T, Li D 2008 Phys. Plasmas 15 042305Google Scholar

    [31]

    Tapinou K C, Wheatley V, Bond D, Jahn I 2023 Phys. Plasmas 30 022707Google Scholar

    [32]

    Tapinou K C, Wheatley V, Bond D 2023 J. Fluid Mech. 977 A19Google Scholar

    [33]

    Rinderknecht H G, Amendt P, Wilks S, Collins G 2018 Plasma Phys. Controlled Fusion 60 064001Google Scholar

    [34]

    Xu A G, Zhang G C, Gan Y B, Chen F, Yu X J 2012 Front. Phys. 7 582Google Scholar

    [35]

    Gan Y B, Xu A G, Lai H L, Li W, Sun G L, Succi S 2022 J. Fluid Mech. 951 A8Google Scholar

    [36]

    Zhang D J, Xu A G, Zhang Y D, Gan Y B, Li Y J 2022 Phys. Fluids 34 086104Google Scholar

    [37]

    Zhang Y D, Xu A G, Chen F, Lin C D, Wei Z H 2022 AIP Adv. 12 035347Google Scholar

    [38]

    Song J H, Xu A G, Miao l, Chen F, Liu Z P, Wang L F, Wang N F, Hou X 2024 Phys. Fluids 36 016107Google Scholar

    [39]

    沙莎, 张焕好, 陈志华, 郑纯, 吴威涛, 石启陈 2020 69 184701Google Scholar

    Sha S, Zhang H H, Chen Z H, Zheng C, Wu W T, Shi Q C 2020 Acta Phys. Sin. 69 184701Google Scholar

    [40]

    Zhang H H, Zheng C, Aubry N, Wu W T, Chen Z H 2020 Phys. Fluids 32 116104Google Scholar

    [41]

    Colella P 1990 J. Comput. Phys. 87 171Google Scholar

    [42]

    Londrillo P, Zanna L D 2004 J. Comput. Phys. 195 17Google Scholar

    [43]

    Shin M, Stone J M, Snyder G F 2008 Astrophys. J. 680 336Google Scholar

    [44]

    Saltzman J 1994 J. Comput. Phys. 115 153Google Scholar

    [45]

    Colella P, Woodward P 1984 J. Comput. Phys. 54 17

    [46]

    Evans C, Hawley J 1988 Astrophys J. 322 659

    [47]

    Lin Z Y, Zhang H H, Chen Z H, Liu Y, Hong Y J 2017 Int. J. Comput. Fluid D. 31 21Google Scholar

    [48]

    Giordano J, Burtschell Y 2006 Phys. Fluids. 18 036102Google Scholar

Metrics
  • Abstract views:  5421
  • PDF Downloads:  52
  • Cited By: 0
Publishing process
  • Received Date:  06 December 2023
  • Accepted Date:  02 February 2024
  • Available Online:  06 February 2024
  • Published Online:  20 April 2024
  • /

    返回文章
    返回
    Baidu
    map