Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design and analysis of biconvex liquid lens with circular hole plate electrode structure

Kong Mei-Mei Xue Yin-Yan Xu Chun-Sheng Dong Yuan Liu Yue Pan Shi-Cheng Zhao Rui

Citation:

Design and analysis of biconvex liquid lens with circular hole plate electrode structure

Kong Mei-Mei, Xue Yin-Yan, Xu Chun-Sheng, Dong Yuan, Liu Yue, Pan Shi-Cheng, Zhao Rui
cstr: 32037.14.aps.73.20231291
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • In this paper, based on the research of zoom liquid lens with parallel plate electrode and the principle of dielectrophoresis, a model of the biconvex liquid lens with circular hole plate electrode structure is proposed, which is a novel three-layer liquid lens structure. The dielectrophoretic effect refers to the phenomenon that free dielectric molecules will be polarized and moved by the force in a non-uniform electric field, thus deforming the dielectric liquid. In the dielectrophoretic liquid lens, only two insulating liquid materials with large refractive index difference and dielectric constant difference need to be selected, which can increase the selection range of liquid materials. The liquid lens structure mainly consists of a piece of double-sided conductive flat plate ITO glass with a circular hole and two pieces of single-sided conductive flat plate ITO glass, which respectively form two sets of flat electrode structures to control the upper interface and lower interface of the liquid droplet. In this structure, the influences of the intermediate glass plate on the focus and imaging are reduced by using the flat plate electrode with circular hole. The theoretical analysis of the structure is carried out with simulation software. Firstly, the models of the biconvex liquid lens with circular hole plate electrode under different voltages are built with Comsol software, the data of upper interface and lower interface of the liquid droplet are exported. Then by using Matlab, the surface shapes of the upper interface and lower interface of the droplet are fitted and the corresponding aspheric coefficients are obtained. Finally, the optical models are built with Zemax software, the imaging optical paths and the variation range of focal length under different voltages are analyzed. On the basis of the simulation, the corresponding device is made, and the specific experimental analysis is carried out. The surface patterns of the upper interface and lower interfaces of the droplet of the biconvex liquid lens under different voltages are recorded, the focal length and imaging resolution of the liquid lens are measured. When the operating voltage is in a range of 0–260 V, the focal length varies from 23.8–17.5 mm, which is basically consistent with the simulation results (22.6–15.9 mm). The feasibility of the structure of the biconvex liquid lens with circular hole plate electrode structure is verified experimentally. The imaging resolution can reach 45.255 lp/mm. The results show that this proposed novel three-layer liquid structure of the biconvex liquid lens has the characteristics of simple structure, easy-to-realize and good imaging quality. Therefore, the research of this biconvex liquid lens can provide a new idea for expanding the high-resolution imaging research of liquid lenses and their applications.
      Corresponding author: Kong Mei-Mei, kongmm@njupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61905117, 61775102).
    [1]

    Zhao Z Z, Kuang F L, Zhang N H, Li L 2021 IEEE Photonics Technol. Lett. 33 1297Google Scholar

    [2]

    Liu J, Li H 2014 J. Opt. 3 25

    [3]

    Liu C, Wang Q H, Yao L X, Wang M H 2014 Micromachines- Basel 5 496Google Scholar

    [4]

    Kopp D, Zappe H 2016 IEEE Photonics Technol. Lett. 28 597Google Scholar

    [5]

    Cheng C C, Chang C A, Yeh J A 2006 Opt. Express 14 4101Google Scholar

    [6]

    Ren H W, Xianyu H Q, Xu S, Wu S T 2008 Opt. Express 16 14954Google Scholar

    [7]

    Xu S, Lin Y J, Wu S T 2009 Opt. Express 17 10499Google Scholar

    [8]

    Lu Y S, Tu H E, Xu Y, Jiang H R 2013 Appl. Phys. Lett. 103 26113Google Scholar

    [9]

    Chen Q M, Li T, Li Z, Lu C, Zhang X 2018 Lab Chip. 18 3849Google Scholar

    [10]

    Kong M M, Zhu L F, Chen D, Liang Z C, Zhao R, Xu E M 2016 J. Opt. Soc. Korea 20 427Google Scholar

    [11]

    Kong M M, Chen X, Yuan Y, Zhao R, Chen T, Liang Z C 2019 Curr. Opt. Photonics 3 177Google Scholar

    [12]

    孔梅梅, 刘悦, 董媛, 薛银燕, 潘世成, 赵瑞 2023 72 154206Google Scholar

    Kong M M, Liu Y, Dong Y, Xue Y Y, Pan S C, Zhao R 2023 Acta. Phys. Sin. 72 154206Google Scholar

    [13]

    王琼华, 刘超, 王迪, 李磊 2021 液体光子器件(北京: 科学出版社) 第82—83页

    Wang Q H, Liu C, Wang D, Li L 2021 Liquid Photonic Device (Beijing: Science Press) pp82–83

    [14]

    Ren H W, Wu S T 2012 Introduction to Adaptive Lenses (Hoboken: Willey) pp107–148

    [15]

    Berthier J 2008 Micro-drops and Digital Microfluidics (New York: William Andrew) pp331–333

    [16]

    Xu S, Ren H W, Wu S T 2013 J. Phys. D: Appl. Phys. 46 483001Google Scholar

    [17]

    Edwards A M J, Brown C V, Newton M I, McHale G 2018 Curr. Opin. Colloid. In. 36 28Google Scholar

    [18]

    Chamakos N T, Kavousanakis M E, Papathanasiou A G 2014 Langmuir 30 4662Google Scholar

    [19]

    袁东 2021 硕士学位论文 (南京: 南京邮电大学)

    Yuan D 2021 M. S. Thesis (Nanjing: Nanjing University of Posts and Telecommunications

    [20]

    梁丹 2022 硕士学位论文 (南京: 南京邮电大学)

    Liang D 2022 M. S. Thesis (Nanjing: Nanjing University of Posts and Telecommunications

  • 图 1  含有圆孔平板电极结构的双凸液体透镜结构 (a) 立体示意图; (b) 剖面图

    Figure 1.  Structure of the biconvex liquid lens with a circular hole plate electrode: (a) Stereogram; (b) profile map.

    图 2  理论推导结构

    Figure 2.  Structure of theoretical derivation.

    图 3  Comsol中含有圆孔平板电极结构的双凸液体透镜模型 (a)侧面图; (b)立体斜视图

    Figure 3.  Biconvex liquid lens model with circular hole plate electrode structure in comsol: (a) Side view; (b) stereoscopic oblique view.

    图 4  初始状态(0 V)时, 双凸液体透镜的液滴面型拟合结果(a)上界面; (b)下界面

    Figure 4.  Droplet profile of the biconvex liquid lens is fitted at the initial state (0 V): (a) Upper interface; (b) lower interface.

    图 5  电压最大(260 V)时, 双凸液体透镜的液滴面型拟合结果 (a)上界面; (b)下界面

    Figure 5.  Droplet profile of the biconvex liquid lens is fitted at maximum voltage (260 V): (a) Upper interface; (b) lower interface.

    图 6  双凸液体透镜的光路图 (a) 初始状态(0 V); (b)电压加到最大(260 V)

    Figure 6.  Optical path diagram of the biconvex liquid lens: (a) Initial state (0 V); (b) maximum voltage state (260 V).

    图 7  制备的含有圆孔平板电极结构的双凸液体透镜实物图

    Figure 7.  Physical image of the biconvex liquid lens with a circular hole plate electrode structure.

    图 8  不同电压下的双凸液体透镜面型图 (a) 0 V; (b) 160 V; (c) 260 V

    Figure 8.  Surface profiles of the biconvex liquid lens under different voltages: (a) 0 V; (b) 160 V; (c) 260 V.

    图 9  玻罗分化线

    Figure 9.  Borro differentiation lines.

    图 10  不同电压下的双凸液体透镜焦距图

    Figure 10.  Focal length of the biconvex liquid lens under different voltages.

    图 11  不同电压下的双凸液体透镜的分辨率图 (a)初始状态; (b)分辨率最大(260 V)

    Figure 11.  Resolution diagram of the biconvex liquid lens under different voltage: (a) Initial state; (b) maximum resolution state (260 V).

    图 12  双凸液体透镜实验与仿真的焦距对比图

    Figure 12.  Comparison of focal length between experimental and simulated the biconvex liquid lens.

    Baidu
  • [1]

    Zhao Z Z, Kuang F L, Zhang N H, Li L 2021 IEEE Photonics Technol. Lett. 33 1297Google Scholar

    [2]

    Liu J, Li H 2014 J. Opt. 3 25

    [3]

    Liu C, Wang Q H, Yao L X, Wang M H 2014 Micromachines- Basel 5 496Google Scholar

    [4]

    Kopp D, Zappe H 2016 IEEE Photonics Technol. Lett. 28 597Google Scholar

    [5]

    Cheng C C, Chang C A, Yeh J A 2006 Opt. Express 14 4101Google Scholar

    [6]

    Ren H W, Xianyu H Q, Xu S, Wu S T 2008 Opt. Express 16 14954Google Scholar

    [7]

    Xu S, Lin Y J, Wu S T 2009 Opt. Express 17 10499Google Scholar

    [8]

    Lu Y S, Tu H E, Xu Y, Jiang H R 2013 Appl. Phys. Lett. 103 26113Google Scholar

    [9]

    Chen Q M, Li T, Li Z, Lu C, Zhang X 2018 Lab Chip. 18 3849Google Scholar

    [10]

    Kong M M, Zhu L F, Chen D, Liang Z C, Zhao R, Xu E M 2016 J. Opt. Soc. Korea 20 427Google Scholar

    [11]

    Kong M M, Chen X, Yuan Y, Zhao R, Chen T, Liang Z C 2019 Curr. Opt. Photonics 3 177Google Scholar

    [12]

    孔梅梅, 刘悦, 董媛, 薛银燕, 潘世成, 赵瑞 2023 72 154206Google Scholar

    Kong M M, Liu Y, Dong Y, Xue Y Y, Pan S C, Zhao R 2023 Acta. Phys. Sin. 72 154206Google Scholar

    [13]

    王琼华, 刘超, 王迪, 李磊 2021 液体光子器件(北京: 科学出版社) 第82—83页

    Wang Q H, Liu C, Wang D, Li L 2021 Liquid Photonic Device (Beijing: Science Press) pp82–83

    [14]

    Ren H W, Wu S T 2012 Introduction to Adaptive Lenses (Hoboken: Willey) pp107–148

    [15]

    Berthier J 2008 Micro-drops and Digital Microfluidics (New York: William Andrew) pp331–333

    [16]

    Xu S, Ren H W, Wu S T 2013 J. Phys. D: Appl. Phys. 46 483001Google Scholar

    [17]

    Edwards A M J, Brown C V, Newton M I, McHale G 2018 Curr. Opin. Colloid. In. 36 28Google Scholar

    [18]

    Chamakos N T, Kavousanakis M E, Papathanasiou A G 2014 Langmuir 30 4662Google Scholar

    [19]

    袁东 2021 硕士学位论文 (南京: 南京邮电大学)

    Yuan D 2021 M. S. Thesis (Nanjing: Nanjing University of Posts and Telecommunications

    [20]

    梁丹 2022 硕士学位论文 (南京: 南京邮电大学)

    Liang D 2022 M. S. Thesis (Nanjing: Nanjing University of Posts and Telecommunications

Metrics
  • Abstract views:  4654
  • PDF Downloads:  64
  • Cited By: 0
Publishing process
  • Received Date:  08 August 2023
  • Accepted Date:  21 September 2023
  • Available Online:  08 October 2023
  • Published Online:  05 January 2024
  • /

    返回文章
    返回
    Baidu
    map