Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Analysis of icosahedral structure in rapidly solidified Pd82Si18 amorphous alloy under high pressure

Chen Bei Deng Yong-He Qi Qing-Hua Gao Ming Wen Da-Dong Wang Xiao-Yun Peng Ping

Citation:

Analysis of icosahedral structure in rapidly solidified Pd82Si18 amorphous alloy under high pressure

Chen Bei, Deng Yong-He, Qi Qing-Hua, Gao Ming, Wen Da-Dong, Wang Xiao-Yun, Peng Ping
cstr: 32037.14.aps.73.20231101
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Compared with traditional glass, metallic glass (MG) has excellent properties, such as high strength, high hardness, high fracture toughness, good soft magnetic properties and corrosion resistance due to its unique structure. Such properties enable it to be used in optics, electronics, construction and other fields, making it a highly promising new material with great application potential. As the properties of amorphous alloys are closely linked with their local structures, microstructure characteristics have always been a research focus in the amorphous field. Previous studies show that the onset temperature of heredity and the hereditary fraction of characteristic clusters can be used to effectively evaluate the glass-forming ability. In order to obtain the relationship between the microstructure characteristic and cluster evolution of amorphous alloy, and reveal the formation of glass, the glass transition processes of the Pd82Si18 alloy under different pressure conditions are simulated by using the molecular dynamics method, and the heredity and evolution of the Pd82Si18 amorphous alloy are analyzed by using the cluster-type index method and the reverse tracking method. The simulation results show that the glass transition temperature of the Pd82Si18 alloy can be increased when the pressure is higher, and a large number of icosahedra are formed in the solidified alloy when the pressure is sufficiently high. Icosahedron is a kind of structure that widely exists in amorphous materials and has been studied for quite a long time. In this work, a detailed comparative analysis of two icosahedra is conducted and the heritability of clusters with different chemical compositions under high pressure is studied. The results show that it is easier for icosahedra with central atom Pd and those with central atom Si to form a medium-range order in the Pd82Si18 amorphous alloy. An increase in pressure conduces to the increase of both onset temperature of heredity and hereditary fraction. Combined with the results of cluster heredity analysis at 0 GPa, the Si-centered clusters have stronger heritability than Pd-centered clusters, thus the former ones have a greater influence on the glass-forming ability. These findings are of significance in understanding the relationship between microstructure evolution and glass formation, and also providing certain guidance for designing amorphous alloys.
      Corresponding author: Deng Yong-He, dengyonghe1@163.com ; Wang Xiao-Yun, wxyyun@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51701071), the Natural Science Foundation of Hunan Province, China (Grant Nos. 2022JJ50115, 2021JJ30179), and the Research Foundation of Education Bureau of Hunan Province, China (Grant No. 22A0522).
    [1]

    Chen M W 2011 NPG Asia Mater. 3 82Google Scholar

    [2]

    Jiang H R, Bochtler B, Riegler S S, Wei X S, Neuber N, Frey M, Gallino I, Busch R, Shen J 2020 J. Alloys Compd. 844 156126Google Scholar

    [3]

    Hua N B, Chen W Z 2017 J. Alloys Compd. 693 816Google Scholar

    [4]

    Li H X, Lu Z C, Wang S L, Wu Y, Lu Z P 2019 Prog. Mater. Sci. 103 235Google Scholar

    [5]

    Yang Y J, Cheng B Y, Lv J W, Li B, Ma M Z, Zhang X Y, Li G, Liu R P 2019 Mater. Sci. Eng., A 746 229Google Scholar

    [6]

    Wang C J, He A N, Wang A D, Pang J, Liang X F, Li Q F, Chang C T, Qiu K Q, Wang X M 2017 Intermetallics 84 142Google Scholar

    [7]

    Jin Z S, Yang Y J, Zhang Z P, Ma X Z, Lv J W, Wang F L, Ma M Z, Zhang X Y, Liu R P 2019 J. Alloys Compd. 806 668Google Scholar

    [8]

    Liu S, Wang L F, Ge J C, Wu Z D, Ke Y B, Li Q, Sun B A, Feng T, Wu Y, Wang J T, Hahn H, Ren Y, Almer J D, Wang X L, Lan S 2020 Acta Mater. 200 42Google Scholar

    [9]

    Li F C, Liu T, Zhang J Y, Shuang S, Wang Q, Wang A D, Wang J G, Yang Y 2019 Mater. Today Adv. 4 100027Google Scholar

    [10]

    Wang W H, Dong C, Shek C H 2004 Mater. Sci. Eng. , R 44 45Google Scholar

    [11]

    Miracle D B, Senkov O N 2017 Acta Mater. 122 448Google Scholar

    [12]

    Abrosimova G E, Aronin A S 2017 Phys. Solid State 59 2248Google Scholar

    [13]

    Zhu L, Wang H, Wang Y C, Ma Y M, Cui Q L, Ma Y M, Zhou G T 2011 Phys. Rev. Lett. 106 145501Google Scholar

    [14]

    Sergueeva A V, Song C, Valiev R Z, Mukherjee A K 2003 Mater. Sci. Eng., A 339 159Google Scholar

    [15]

    Bazlov A I, Parkhomenko M S, Ubyivovk E V, Zanaeva E N, Gunderov D V, Louzguine-Luzgin D V 2022 J. Non-Cryst. Solids 576 121220Google Scholar

    [16]

    Galimzyanov B N, Doronina M A, Mokshin A V 2021 J. Non-Cryst. Solids 572 121102Google Scholar

    [17]

    Faruq M, Villesuzanne A, Shao G 2018 J. Non-Cryst. Solids 487 72Google Scholar

    [18]

    Hua D P, Ye W T, Jia Q, Zhou Q, Xia Q S, Shi J Q, Deng Y Y, Wang H F 2020 Appl. Surf. Sci. 511 145545Google Scholar

    [19]

    Barmpalexis P, Karagianni A, Katopodis K, Vardaka E, Kachrimanis K 2019 Eur. J. Pharm. Sci. 130 260Google Scholar

    [20]

    Verlet L 1967 Phys. Rev. 159 20Google Scholar

    [21]

    Sheng H W https:\\sites.google.com/site/eampotentials/ table/PdSi [2023-9-03

    [22]

    Ojovan M I, Louzguine-Luzgin D V 2020 J. Phys. Chem. B 124 3186Google Scholar

    [23]

    Deng Y H, Wen D D, Li Y, Liu J, Peng P 2018 Philos. Mag. 98 2861Google Scholar

    [24]

    Zheng K F, Branicio P S 2020 Phys. Rev. Mater. 4 076001Google Scholar

    [25]

    Suzuki K, Hayashi N, Tomizuka Y, Fukunaga T, Kai K, Watanabe N 1984 J. Non-Cryst. Solids 61 637Google Scholar

    [26]

    Wen D D, Deng Y H, Liu J, Tian Z A, Peng P 2017 Comput. Mater. Sci. 140 275Google Scholar

    [27]

    Liu R S, Liu H R, Dong K J, Hou Z Y, Tian Z A, Peng P, Yu A B 2009 J. Non-Cryst. Solids 355 541Google Scholar

    [28]

    Liu R S, Dong K J, Li J Y, Yu A B, Zou R P 2005 J. Non-Cryst. Solids 351 612Google Scholar

    [29]

    Wen D D, Deng Y H, Gao M, Tian Z A 2021 Chin. Phys. B 30 076101Google Scholar

    [30]

    Wen D D, Peng P, Jiang Y Q, Tian Z A, Li W, Liu R S 2015 J. Non-Cryst. Solids 427 199Google Scholar

  • 图 1  Pd82Si18合金300 K时双体分布函数 (a) 不同压强下的总双体分布函数; (b) 0 GPa时总双体分布函数和偏双体分布函数

    Figure 1.  Pair distribution functions (PDFs) for Pd82Si18 alloy at 300 K: (a) Total PDFs under different pressures; (b) total PDFs and partial PDFs at 0 GPa.

    图 2  不同压强下快凝Pd82Si18合金平均原子总能随温度的变化及不同压强下体系的玻璃转变温度

    Figure 2.  Temperature dependent variation of total energy per atom for rapidly solidified Pd82Si18 alloy and the glass transition temperature under different pressures.

    图 3  不同压强300 K时典型团簇数目

    Figure 3.  Number of typical clusters at 300 K under different pressures.

    图 4  (a) 不同压强下300 K时典型团簇中以Pd, Si为中心的团簇数目; (b) 0 GPa团簇示例

    Figure 4.  (a)The number of Pd-centered and Si-centered clusters in typical clusters at 300 K under different pressures; (b) cluster examples at 0 GPa.

    图 5  不同压强300 K时二十面体不同化学组分团簇数目 (a) (12 12/1551); (b) (12 2/1441 8/1551 2/1661); (c) 50 GPa团簇示例

    Figure 5.  The number of clusters of different chemical components of the icosahedra at 300 K under different pressures: (a) (12 12/1551); (b) (12 2/1441 8/1551 2/1661); (c) cluster examples at 50 GPa.

    图 6  0 GPa典型团簇快凝过程的阶段遗传分数

    Figure 6.  The fraction of staged heredity of typical clusters during rapid solidification at 0 GPa.

    图 7  不同构型二十面体20—50 GPa下快凝过程的阶段遗传分数 (a) (12 12/1551); (b) (12 2/1441 8/1551 2/1661)

    Figure 7.  The fraction of staged heredity of different configurations icosahedrons during rapid solidification under 20–50 GPa: (a) (12 12/1551); (b) (12 2/1441 8/1551 2/1661).

    图 8  50 GPa快凝过程中Pd11Si2-Pd和Pd12Si1-Si配位原子与中心原子的距离变化

    Figure 8.  Variation of distance between coordination atoms and central atoms of Pd11Si2-Pd and Pd12Si1-Si during rapid solidification at 50 GPa.

    图 9  50 GPa 300 K时采用不同联结方式形成扩展团簇两个(12 12/1551)中心之间距离分布

    Figure 9.  The distributions of the distance between two (12 12/1551) centers adopting each type of connection at 300 K under 50 GPa.

    图 10  不同压强300 K以VS, ES, FS, IS方式联结形成的扩展团簇数目 (a) (12 12/1551); (b) (12 2/1441 8/1551 2/1661)

    Figure 10.  The number of extended clusters formed by linking in the manner of VS, ES, FS, IS at 300 K under different pressures: (a) (12 12/1551); (b) (12 2/1441 8/1551 2/1661).

    图 11  不同压强二十面体中心原子以Pd—Pd, Pd—Si, Si—Si相连形成的IMRO数目 (a) (12 12/1551); (b) (12 2/1441 8/1551 2/1661)

    Figure 11.  The number of IMRO formed by the icosahedral center atoms connected by Pd—Pd, Pd—Si, and Si—Si under different pressures: (a) (12 12/1551); (b) (12 2/1441 8/1551 2/1661).

    Baidu
  • [1]

    Chen M W 2011 NPG Asia Mater. 3 82Google Scholar

    [2]

    Jiang H R, Bochtler B, Riegler S S, Wei X S, Neuber N, Frey M, Gallino I, Busch R, Shen J 2020 J. Alloys Compd. 844 156126Google Scholar

    [3]

    Hua N B, Chen W Z 2017 J. Alloys Compd. 693 816Google Scholar

    [4]

    Li H X, Lu Z C, Wang S L, Wu Y, Lu Z P 2019 Prog. Mater. Sci. 103 235Google Scholar

    [5]

    Yang Y J, Cheng B Y, Lv J W, Li B, Ma M Z, Zhang X Y, Li G, Liu R P 2019 Mater. Sci. Eng., A 746 229Google Scholar

    [6]

    Wang C J, He A N, Wang A D, Pang J, Liang X F, Li Q F, Chang C T, Qiu K Q, Wang X M 2017 Intermetallics 84 142Google Scholar

    [7]

    Jin Z S, Yang Y J, Zhang Z P, Ma X Z, Lv J W, Wang F L, Ma M Z, Zhang X Y, Liu R P 2019 J. Alloys Compd. 806 668Google Scholar

    [8]

    Liu S, Wang L F, Ge J C, Wu Z D, Ke Y B, Li Q, Sun B A, Feng T, Wu Y, Wang J T, Hahn H, Ren Y, Almer J D, Wang X L, Lan S 2020 Acta Mater. 200 42Google Scholar

    [9]

    Li F C, Liu T, Zhang J Y, Shuang S, Wang Q, Wang A D, Wang J G, Yang Y 2019 Mater. Today Adv. 4 100027Google Scholar

    [10]

    Wang W H, Dong C, Shek C H 2004 Mater. Sci. Eng. , R 44 45Google Scholar

    [11]

    Miracle D B, Senkov O N 2017 Acta Mater. 122 448Google Scholar

    [12]

    Abrosimova G E, Aronin A S 2017 Phys. Solid State 59 2248Google Scholar

    [13]

    Zhu L, Wang H, Wang Y C, Ma Y M, Cui Q L, Ma Y M, Zhou G T 2011 Phys. Rev. Lett. 106 145501Google Scholar

    [14]

    Sergueeva A V, Song C, Valiev R Z, Mukherjee A K 2003 Mater. Sci. Eng., A 339 159Google Scholar

    [15]

    Bazlov A I, Parkhomenko M S, Ubyivovk E V, Zanaeva E N, Gunderov D V, Louzguine-Luzgin D V 2022 J. Non-Cryst. Solids 576 121220Google Scholar

    [16]

    Galimzyanov B N, Doronina M A, Mokshin A V 2021 J. Non-Cryst. Solids 572 121102Google Scholar

    [17]

    Faruq M, Villesuzanne A, Shao G 2018 J. Non-Cryst. Solids 487 72Google Scholar

    [18]

    Hua D P, Ye W T, Jia Q, Zhou Q, Xia Q S, Shi J Q, Deng Y Y, Wang H F 2020 Appl. Surf. Sci. 511 145545Google Scholar

    [19]

    Barmpalexis P, Karagianni A, Katopodis K, Vardaka E, Kachrimanis K 2019 Eur. J. Pharm. Sci. 130 260Google Scholar

    [20]

    Verlet L 1967 Phys. Rev. 159 20Google Scholar

    [21]

    Sheng H W https:\\sites.google.com/site/eampotentials/ table/PdSi [2023-9-03

    [22]

    Ojovan M I, Louzguine-Luzgin D V 2020 J. Phys. Chem. B 124 3186Google Scholar

    [23]

    Deng Y H, Wen D D, Li Y, Liu J, Peng P 2018 Philos. Mag. 98 2861Google Scholar

    [24]

    Zheng K F, Branicio P S 2020 Phys. Rev. Mater. 4 076001Google Scholar

    [25]

    Suzuki K, Hayashi N, Tomizuka Y, Fukunaga T, Kai K, Watanabe N 1984 J. Non-Cryst. Solids 61 637Google Scholar

    [26]

    Wen D D, Deng Y H, Liu J, Tian Z A, Peng P 2017 Comput. Mater. Sci. 140 275Google Scholar

    [27]

    Liu R S, Liu H R, Dong K J, Hou Z Y, Tian Z A, Peng P, Yu A B 2009 J. Non-Cryst. Solids 355 541Google Scholar

    [28]

    Liu R S, Dong K J, Li J Y, Yu A B, Zou R P 2005 J. Non-Cryst. Solids 351 612Google Scholar

    [29]

    Wen D D, Deng Y H, Gao M, Tian Z A 2021 Chin. Phys. B 30 076101Google Scholar

    [30]

    Wen D D, Peng P, Jiang Y Q, Tian Z A, Li W, Liu R S 2015 J. Non-Cryst. Solids 427 199Google Scholar

Metrics
  • Abstract views:  5082
  • PDF Downloads:  78
  • Cited By: 0
Publishing process
  • Received Date:  06 July 2023
  • Accepted Date:  28 September 2023
  • Available Online:  16 November 2023
  • Published Online:  20 January 2024
  • /

    返回文章
    返回
    Baidu
    map