Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

1550-nm vertical-cavity surface-emitting laser with single-mode power of milliwatts

Zhang Jian-Wei Zhang Xing Zhou Yin-Li Li Hui Wang Yan-Bing Chen Zhi-Ming Xu Jia-Qi Ning Yong-Qiang Wang Li-Jun

Citation:

1550-nm vertical-cavity surface-emitting laser with single-mode power of milliwatts

Zhang Jian-Wei, Zhang Xing, Zhou Yin-Li, Li Hui, Wang Yan-Bing, Chen Zhi-Ming, Xu Jia-Qi, Ning Yong-Qiang, Wang Li-Jun
cstr: 32037.14.aps.71.20212132
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • We report on a 1550-nm vertical-cavity surface-emitting laser (VCSEL) with single mode power of 0.97 mW. The quaternary AlGaInAs quantum well is designed to improve the gain level in an active region. The mesa structure with tunneling capability is designed and fabricated to achieve the efficient carrier injection and the transverse mode guiding. The distributed Bragg reflector (DBR) mirror of 1550 nm VCSEL consists of the semiconductor DBR and outer dielectric DBR. The central wavelength of VCSEL is 1547.6 nm. The maximum output power of 2.6 mW is achieved at 15 ℃, and the maximum single-mode output power is 0.97 mW. The side mode suppression ratio (SMSR) can reach more than 35 dB. The maximum output power decreases with operation temperature increasing. However, the maximum output power of more than 1.3 mW is also gained at 35 ℃. The shift coefficient of the central wavelength varying with the operation current is 0.13 nm/mA. And the wavelength shows a stable shift with the operation current in the single-mode working region, which indicates the application possibility in the field of gas detection.
      Corresponding author: Zhang Xing, zhangx@ciomp.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2018YFB2002401), the Major Program of the National Natural Science Foundation of China (Grant Nos. 62090060, 61727822), the National Natural Science Foundation of China (Grant Nos. 61874117, 11774343, 61804087), the Key Projects of Jilin Province Science and Technology Development Plan, China (Grant No. 20200401006GX ), and the Natural Science Foundation of Shandong Province, China (Grant No. ZR2019QF015).
    [1]

    Kamau P, Ming M, Timothy B G, Christian N, Enno R, Markus O, Monroy I T 2011 J. Opt. Commun. Netw 3 399Google Scholar

    [2]

    Boucher J F, Callahan J J 2011 Proceedings of Defense, Security, and Sensing SPIE Orlando, United States, April 25–29, 2011 p80390B1

    [3]

    Nicolas D, Sébastien C 2002 Prog. Energ. Combust. 28 107Google Scholar

    [4]

    Hofmann W, Muller M, Nadtochiy A, Meltzer C, Mutig A, Bohm G, Rosskopf J, Bimberg D, Amann M C, Chang-Hasnain C 2009 Opt. Express 17 17547Google Scholar

    [5]

    Dalila E, Michael Y, Hung K C, Sam S K, Neelanjan B, Sam C, Ghulam H, Mike H, Chris C 2020 Proceedings of SPIE OPTO San Francisco, California, United States, February 1–6, 2020 p113000R

    [6]

    Ralph J, Virgil B, Jim T, Bo-Su C, David M, James O, Tzu-Yu W, Jin K, Ho-Ki K, Jae-Hyun R, Gyoungwon P, Edie K, Helen C, Mike R, Terry M, Joe G 2003 Proceedings of Integrated Optoelectronics Devices SPIE San Jose, CA, United States, January 25–31, 2003 p4994

    [7]

    Michael M, Werner H, Tobias G, Markus H, Philip W, Robin D N, Enno R, Gerhard B, Dieter B, Markus-Christian A 2011 IEEE J. Sel. Top. Quant. 17 1158Google Scholar

    [8]

    Syrbu A, Mircea A, Mereuta A, Caliman A, Berseth C A, Suruceanu G, Iakovlev V, Achtenhagen M, Rudra A, Kapon E 2004 IEEE Photon. Technol. Lett. 16 1230Google Scholar

    [9]

    Gerhard B, Markus O, Robert S, Juergen R, Christian L, Markus M, Fabian K, Felix M, Ralf M, Markus-Christian A 2003 J. Cryst. Growth. 251 748Google Scholar

    [10]

    Müller M, Hofmann W, Böhm G, Amann M C 2009 IEEE Photon. Technol. Lett. 21 1615Google Scholar

    [11]

    Caliman A, Mereuta A, Suruceanu G, Iakovlev V, Sirbu A, Kapon E 2011 Opt. Express 19 16996Google Scholar

    [12]

    Yi R, Yang W J, Christopher C, Michael C Y H, Philip W, Salman K, Mohammad R C, Morteza Z, Alan E W, Connie J C H 2013 IEEE J. Sel. Top. Quant. 19 1701311Google Scholar

    [13]

    Priyanka G, Mohit S, Ananya J, Monika K, Somendra P S, Nikita S, Gurjit K 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), Chennai, India, March 3–5, 2016 p4220

    [14]

    Zhao D, Yang H, Chuwongin S, Seo J H, Ma Z, Zhou W 2012 IEEE Photonics. J. 4 2169Google Scholar

    [15]

    LIU L J, WU Y D, WANG Y, WANG L L, An J M, ZHAO Y W 2020 J. Infrared Millim. Waves 39(4) 397Google Scholar

    [16]

    Dalila E, Valdimir I, Alexei S, Grigore S, Zlatco M, Andrei C, Alexandru M, Elyahou K 2014 Opt. Express 22 32180Google Scholar

    [17]

    张继业, 张建伟, 曾玉刚, 张俊, 宁永强, 张星, 秦莉, 刘云, 王立军 2020 69 054204Google Scholar

    Zhang J Y, Zhang J W, Zeng Y G, Zhang J, Ning Y Q, Zhang X, Qin L, Liu Y, Wang L J 2020 Acta Phys. Sin. 69 054204Google Scholar

    [18]

    Weng W C, Kent D C, Mary H C, Kevin L L, Hadley G R 1997 IEEE J. Sel. Top. Quant. 33 1810Google Scholar

    [19]

    Hadley G R 1995 Opt. Lett. 20 1483Google Scholar

    [20]

    Zhang J W, Zhang X, Zhu H B, Zhang J, Ning Y Q, Qin L, Wang L J 2015 Opt. Express 23 14763Google Scholar

    [21]

    Unold H J, Mahmoud S W Z, Jager R, Kicherer M, Riedl M C, Ebeling K J 2000 IEEE Photon. Technol. Lett. 12 939Google Scholar

    [22]

    Nikolay N L, James A L, Jorg R K, Vitaly A S, Dieter B, Philip M, Gerrit F, Alexey S P, Denis M, Gerard K, Adrian A, Leonid Y K, Sergey A B, Innokenty I N, Nikolay A M, Christoph C, Ronald F 2012 Proceedings of SPIE OPTO San Francisco, California, United States, January 21–26, 2012 p82760K

  • 图 1  1550 nm波段VCSEL结构示意图

    Figure 1.  Schematic cross-section of 1550 nm VCSEL structure.

    图 2  (a) 6 nm Al0.06Ga0.22InAs量子阱的价带子能级分布情况; (b)不同载流子浓度下的增益谱变化情况

    Figure 2.  (a) Separation of valence band energy level of 6 nm Al0.06Ga0.22InAs quantum wells; (b) the gain spectra of quantum well under different carrier density.

    图 3  隧穿结结构的电流-电压特性模拟结果, 插图为各隧穿层在1 V偏压下的能带结构计算结果及载流子传输过程示意图

    Figure 3.  Simulation results of the current-voltage curve of tunneling junction mesa; the insert shows the energy band structure under the bias voltage of 1 V and the schematic of carrier transmission process.

    图 4  隧穿结台面刻蚀深度对芯层与包层的折射率差值Δneff = neff-coreneff-cladding以及单模工作区直径的影响

    Figure 4.  Calculated Δneff of 1550 nm VCSEL and the diameter of single-mode operation changing with the etch depth of mesa structure.

    图 5  不同工作温度下VCSEL的功率-电流曲线测试结果

    Figure 5.  Power-current-characteristics of 1550 nm VCSEL under different operation temperatures.

    图 6  工作温度为15 ℃时, (a) VCSEL在不同电流下的单模激光光谱, 以及(b)出光波长与SMSR随工作电流的变化关系

    Figure 6.  (a) Single-mode spectra of 1550 nm VCSEL for various bias currents; (b) the wavelength and SMSR versus the operation current. The operation temperature is 15 ℃.

    Baidu
  • [1]

    Kamau P, Ming M, Timothy B G, Christian N, Enno R, Markus O, Monroy I T 2011 J. Opt. Commun. Netw 3 399Google Scholar

    [2]

    Boucher J F, Callahan J J 2011 Proceedings of Defense, Security, and Sensing SPIE Orlando, United States, April 25–29, 2011 p80390B1

    [3]

    Nicolas D, Sébastien C 2002 Prog. Energ. Combust. 28 107Google Scholar

    [4]

    Hofmann W, Muller M, Nadtochiy A, Meltzer C, Mutig A, Bohm G, Rosskopf J, Bimberg D, Amann M C, Chang-Hasnain C 2009 Opt. Express 17 17547Google Scholar

    [5]

    Dalila E, Michael Y, Hung K C, Sam S K, Neelanjan B, Sam C, Ghulam H, Mike H, Chris C 2020 Proceedings of SPIE OPTO San Francisco, California, United States, February 1–6, 2020 p113000R

    [6]

    Ralph J, Virgil B, Jim T, Bo-Su C, David M, James O, Tzu-Yu W, Jin K, Ho-Ki K, Jae-Hyun R, Gyoungwon P, Edie K, Helen C, Mike R, Terry M, Joe G 2003 Proceedings of Integrated Optoelectronics Devices SPIE San Jose, CA, United States, January 25–31, 2003 p4994

    [7]

    Michael M, Werner H, Tobias G, Markus H, Philip W, Robin D N, Enno R, Gerhard B, Dieter B, Markus-Christian A 2011 IEEE J. Sel. Top. Quant. 17 1158Google Scholar

    [8]

    Syrbu A, Mircea A, Mereuta A, Caliman A, Berseth C A, Suruceanu G, Iakovlev V, Achtenhagen M, Rudra A, Kapon E 2004 IEEE Photon. Technol. Lett. 16 1230Google Scholar

    [9]

    Gerhard B, Markus O, Robert S, Juergen R, Christian L, Markus M, Fabian K, Felix M, Ralf M, Markus-Christian A 2003 J. Cryst. Growth. 251 748Google Scholar

    [10]

    Müller M, Hofmann W, Böhm G, Amann M C 2009 IEEE Photon. Technol. Lett. 21 1615Google Scholar

    [11]

    Caliman A, Mereuta A, Suruceanu G, Iakovlev V, Sirbu A, Kapon E 2011 Opt. Express 19 16996Google Scholar

    [12]

    Yi R, Yang W J, Christopher C, Michael C Y H, Philip W, Salman K, Mohammad R C, Morteza Z, Alan E W, Connie J C H 2013 IEEE J. Sel. Top. Quant. 19 1701311Google Scholar

    [13]

    Priyanka G, Mohit S, Ananya J, Monika K, Somendra P S, Nikita S, Gurjit K 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), Chennai, India, March 3–5, 2016 p4220

    [14]

    Zhao D, Yang H, Chuwongin S, Seo J H, Ma Z, Zhou W 2012 IEEE Photonics. J. 4 2169Google Scholar

    [15]

    LIU L J, WU Y D, WANG Y, WANG L L, An J M, ZHAO Y W 2020 J. Infrared Millim. Waves 39(4) 397Google Scholar

    [16]

    Dalila E, Valdimir I, Alexei S, Grigore S, Zlatco M, Andrei C, Alexandru M, Elyahou K 2014 Opt. Express 22 32180Google Scholar

    [17]

    张继业, 张建伟, 曾玉刚, 张俊, 宁永强, 张星, 秦莉, 刘云, 王立军 2020 69 054204Google Scholar

    Zhang J Y, Zhang J W, Zeng Y G, Zhang J, Ning Y Q, Zhang X, Qin L, Liu Y, Wang L J 2020 Acta Phys. Sin. 69 054204Google Scholar

    [18]

    Weng W C, Kent D C, Mary H C, Kevin L L, Hadley G R 1997 IEEE J. Sel. Top. Quant. 33 1810Google Scholar

    [19]

    Hadley G R 1995 Opt. Lett. 20 1483Google Scholar

    [20]

    Zhang J W, Zhang X, Zhu H B, Zhang J, Ning Y Q, Qin L, Wang L J 2015 Opt. Express 23 14763Google Scholar

    [21]

    Unold H J, Mahmoud S W Z, Jager R, Kicherer M, Riedl M C, Ebeling K J 2000 IEEE Photon. Technol. Lett. 12 939Google Scholar

    [22]

    Nikolay N L, James A L, Jorg R K, Vitaly A S, Dieter B, Philip M, Gerrit F, Alexey S P, Denis M, Gerard K, Adrian A, Leonid Y K, Sergey A B, Innokenty I N, Nikolay A M, Christoph C, Ronald F 2012 Proceedings of SPIE OPTO San Francisco, California, United States, January 21–26, 2012 p82760K

Metrics
  • Abstract views:  15166
  • PDF Downloads:  399
  • Cited By: 0
Publishing process
  • Received Date:  19 November 2021
  • Accepted Date:  01 December 2021
  • Available Online:  26 January 2022
  • Published Online:  20 March 2022
  • /

    返回文章
    返回
    Baidu
    map