Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mask-RCNN recognition method of composite fold shape in ultrasound images

Zhang Hai-Yan Xu Xin-Yu Ma Xue-Fen Zhu Qi Peng Li

Citation:

Mask-RCNN recognition method of composite fold shape in ultrasound images

Zhang Hai-Yan, Xu Xin-Yu, Ma Xue-Fen, Zhu Qi, Peng Li
cstr: 32037.14.aps.71.20212009
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Wrinkle defects will be inevitably produced during composite manufacturing and the in-service life of composite structures. Because of their diverse morphological changes and small deformation, it is difficult to manually identify the wrinkle with important errors. In order to improve the inspection efficiency, a Mask-RCNN algorithm is proposed to detect and classify different forms of wrinkle defects in composites based on phased array images. Carbon fiber composite laminates are prepared first in different forms of wrinkle defects. Secondly, the ultrasonic phased array is used to collect full matrix data. The longitudinal scanning image of the composite laminate is then obtained through the wavenumber imaging algorithm. According to the geometric characteristics of the folds in the geological layer, the wrinkles in the composite laminate are divided into three categories, and the relationship between the wrinkle shape and the material damage degree is established. The Mask-RCNN algorithm is finally proposed for automaticaly detecting and classifying the wrinkle defects. The introduction of semantic segmentation in this algorithm can help to reveal the positions and shapes of wrinkle defects. The experimental results show that the accuracies of Mask-RCNN in the recognition of different forms of wrinkles reach 92.1%, 90.9%, and 93.3%, respectively, and the classification and recognition of wrinkles are accurate and effective. It provides theoretical support for the integration and automation of data acquisition-imaging-defect recognition in composite industries.
      Corresponding author: Zhang Hai-Yan, hyzh@shu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12174245, 11874255, 11904223).
    [1]

    赵伟, 刘立武, 孙健, 冷劲松, 刘彦菊 2021 宇航材料工艺 51 73Google Scholar

    Zhao W, Liu L W, Sun J, Leng J S 2021 Aerosp. Mater. Technol. 51 73Google Scholar

    [2]

    黎盛寓 2020 塑料科技 48 81Google Scholar

    Li S Y 2020 Plast. Sci. Technol. 48 81Google Scholar

    [3]

    陈珍, 李锐 2021 农机使用与维修 06 33Google Scholar

    Chen Z, Li R 2021 Agric. Machinery Using Maintenance 06 33Google Scholar

    [4]

    张梦杰, 周春鹏, 陈华辉, 张刚利 2019 中国临床神经外科杂志 24 356Google Scholar

    Zhang M G, Zhou C P, Chen H H, Zhang G L 2019 Chin. J. Clin. Neurosurg. 24 356Google Scholar

    [5]

    于晓东, 胡海晓, 贾欲明, 王敏, 曹东风 2020 复合材料学报 37 1932Google Scholar

    Yu X D, Hu H X, Jia Y M, Wang M, Cao D F 2020 Acta Mater. Compos. Sin. 37 1932Google Scholar

    [6]

    Pandey R K, Sun C T 1999 Compos. Sci. Technol. 59 405Google Scholar

    [7]

    Hsiao H M, Daniel I M 1996 Compos. Sci. Technol. 56 581Google Scholar

    [8]

    Hsiao H M, Daniel I M 1996 Composites Part A 27 931Google Scholar

    [9]

    Alexander C, Kulkarni S 2008 Int. Pipeline Conf. 7 61

    [10]

    李韦清, 杨涛, 杨冠侠, 刘思南, 杜宇, 刘畅 2018 固体火箭技术 41 621Google Scholar

    Li W Q, Yang T, Yang G X, Liu S N, Du Y, Liu C 2018 J. Solid Rocket Technol. 41 621Google Scholar

    [11]

    张婷, 黄爱华, 李向前 2021 航空制造技术 64 78Google Scholar

    Zhang T, Huang A H, Li X Q 2021 Aeronaut. Manuf. Technol. 64 78Google Scholar

    [12]

    Sandhu A, Reinarz A, Dodwell T J 2018 Composites Part B 205 58Google Scholar

    [13]

    Koichi M, Yoshihiro M, Akira T, Yoshiro S 2016 Composites Part B 86 84Google Scholar

    [14]

    张海燕, 宋佳昕, 任燕, 朱琦, 马雪芬 2021 70 060501Google Scholar

    Zhang H Y, Song J X, Ren Y, Zhu Q, Ma X F 2021 Acta Phys. Sin. 70 060501Google Scholar

    [15]

    周正干, 李洋, 周文彬 2016 机械工程学报 52 1Google Scholar

    Zhou Z G, Li Y, Zhou W B 2016 Chin. J. Mech. Eng. 52 1Google Scholar

    [16]

    Zhang H Y, Song J X, Ren Y, Zhu Q, Ma X F 2021 J. Compos. Mater. 56 1Google Scholar

    [17]

    Callow H J, Hayes M P, Gough P T 2022 Electron. Lett. 38 336Google Scholar

    [18]

    于爱暄 2020 硕士学位论文 (大庆: 东北石油大学)

    Yu A X 2020 M. S. Thesis (Daqing: Northeast Petroleum University) (in Chinese)

    [19]

    Xie Z K, He F X, Fu S P, Sato I, Tao D C, Sugiyama M 2021 Neural Comput. 33 2163Google Scholar

    [20]

    Zhang W P, Chen Y G, Yang W M, Wang G J, Xue J H 2021 IEEE Trans. Neural. Networks. Learn. Syst. 32 4742Google Scholar

    [21]

    Abdulhamit S 2013 Comput. Biol. Med. 43 576Google Scholar

  • 图 1  褶皱缺陷自动分类识别流程图

    Figure 1.  Flow chart of automatic classification and recognition of wrinkle defects.

    图 2  褶皱形态分类 (a) form-Ⅰ类别褶皱形态; (b) form-Ⅱ类别褶皱形态; (c) form-Ⅲ类别褶皱形态

    Figure 2.  Classification of wrinkle morphology: (a) Form-Ⅰ category wrinkle morphology; (b) form-Ⅱ category wrinkle morphology; (c) form-Ⅲ category wrinkle morphology

    图 3  Mask-RCNN网络结构

    Figure 3.  The network structure of Mask-RCNN.

    图 4  ResNet50网络构成

    Figure 4.  ResNet50 network composition.

    图 5  实验装置图

    Figure 5.  Experimental device.

    图 6  检测试样及其波数成像 (a) 显微镜图; (b) 波数成像法图; (c) 对图(b)加噪声; (d) 对图(b)调整亮度并沿x轴翻转

    Figure 6.  est sample and its wavenumber imaging: (a) Microscope image; (b) wavenumber algorithm; (c) add noise to Figure (b); (d) adjust the brightness of Figure (b) and flip along the x-axis.

    图 7  测试图像及其分类结果 (a) 含有一个褶皱的原始图片; (b) 图(a)的测试结果图; (c)含有同一种类多个褶皱的原始图片; (d) 图(c)的测试结果图; (e) 含有多种类多个褶皱的原始图片; (f) 图(e)的测试结果

    Figure 7.  Test image and its results: (a) The original picture containing one wrinkle; (b) the test result picture of Figure (a); (c) the original picture containing multiple wrinkles of the same type; (d) the test result picture of Figure (c); (e) the original picture containing multiple types of wrinkles; (f) the test result picture of Figure (e).

    表 1  超声相控阵参数设置

    Table 1.  Parameter settings of ultrasonic phased array.

    参数阵元数阵元宽度 /mm阵元
    中心距/mm
    中心频率/MHz采样频率/MHz
    320.91.0550
    DownLoad: CSV

    表 2  分类结果的混淆矩阵

    Table 2.  Classification results confusion matrix.

    真实标签预测标签
    类别A类别B
    类别ATPFN
    类别BFPTN
    DownLoad: CSV

    表 3  form-Ⅰ混淆矩阵数据

    Table 3.  The form-Ⅰ confusion matrix data.

    真实标签预测标签
    form-Ⅰ其他
    form-Ⅰ354
    其他326
    DownLoad: CSV

    表 4  form-Ⅱ混淆矩阵数据

    Table 4.  The form-Ⅱ confusion matrix data.

    真实标签预测标签
    form-Ⅱ其他
    form-Ⅱ100
    其他123
    DownLoad: CSV

    表 5  form-Ⅲ混淆矩阵数据

    Table 5.  The form-Ⅲ confusion matrix data.

    真实标签预测标签
    form-Ⅲ其他
    form-Ⅲ283
    其他231
    DownLoad: CSV
    Baidu
  • [1]

    赵伟, 刘立武, 孙健, 冷劲松, 刘彦菊 2021 宇航材料工艺 51 73Google Scholar

    Zhao W, Liu L W, Sun J, Leng J S 2021 Aerosp. Mater. Technol. 51 73Google Scholar

    [2]

    黎盛寓 2020 塑料科技 48 81Google Scholar

    Li S Y 2020 Plast. Sci. Technol. 48 81Google Scholar

    [3]

    陈珍, 李锐 2021 农机使用与维修 06 33Google Scholar

    Chen Z, Li R 2021 Agric. Machinery Using Maintenance 06 33Google Scholar

    [4]

    张梦杰, 周春鹏, 陈华辉, 张刚利 2019 中国临床神经外科杂志 24 356Google Scholar

    Zhang M G, Zhou C P, Chen H H, Zhang G L 2019 Chin. J. Clin. Neurosurg. 24 356Google Scholar

    [5]

    于晓东, 胡海晓, 贾欲明, 王敏, 曹东风 2020 复合材料学报 37 1932Google Scholar

    Yu X D, Hu H X, Jia Y M, Wang M, Cao D F 2020 Acta Mater. Compos. Sin. 37 1932Google Scholar

    [6]

    Pandey R K, Sun C T 1999 Compos. Sci. Technol. 59 405Google Scholar

    [7]

    Hsiao H M, Daniel I M 1996 Compos. Sci. Technol. 56 581Google Scholar

    [8]

    Hsiao H M, Daniel I M 1996 Composites Part A 27 931Google Scholar

    [9]

    Alexander C, Kulkarni S 2008 Int. Pipeline Conf. 7 61

    [10]

    李韦清, 杨涛, 杨冠侠, 刘思南, 杜宇, 刘畅 2018 固体火箭技术 41 621Google Scholar

    Li W Q, Yang T, Yang G X, Liu S N, Du Y, Liu C 2018 J. Solid Rocket Technol. 41 621Google Scholar

    [11]

    张婷, 黄爱华, 李向前 2021 航空制造技术 64 78Google Scholar

    Zhang T, Huang A H, Li X Q 2021 Aeronaut. Manuf. Technol. 64 78Google Scholar

    [12]

    Sandhu A, Reinarz A, Dodwell T J 2018 Composites Part B 205 58Google Scholar

    [13]

    Koichi M, Yoshihiro M, Akira T, Yoshiro S 2016 Composites Part B 86 84Google Scholar

    [14]

    张海燕, 宋佳昕, 任燕, 朱琦, 马雪芬 2021 70 060501Google Scholar

    Zhang H Y, Song J X, Ren Y, Zhu Q, Ma X F 2021 Acta Phys. Sin. 70 060501Google Scholar

    [15]

    周正干, 李洋, 周文彬 2016 机械工程学报 52 1Google Scholar

    Zhou Z G, Li Y, Zhou W B 2016 Chin. J. Mech. Eng. 52 1Google Scholar

    [16]

    Zhang H Y, Song J X, Ren Y, Zhu Q, Ma X F 2021 J. Compos. Mater. 56 1Google Scholar

    [17]

    Callow H J, Hayes M P, Gough P T 2022 Electron. Lett. 38 336Google Scholar

    [18]

    于爱暄 2020 硕士学位论文 (大庆: 东北石油大学)

    Yu A X 2020 M. S. Thesis (Daqing: Northeast Petroleum University) (in Chinese)

    [19]

    Xie Z K, He F X, Fu S P, Sato I, Tao D C, Sugiyama M 2021 Neural Comput. 33 2163Google Scholar

    [20]

    Zhang W P, Chen Y G, Yang W M, Wang G J, Xue J H 2021 IEEE Trans. Neural. Networks. Learn. Syst. 32 4742Google Scholar

    [21]

    Abdulhamit S 2013 Comput. Biol. Med. 43 576Google Scholar

Metrics
  • Abstract views:  7807
  • PDF Downloads:  124
  • Cited By: 0
Publishing process
  • Received Date:  28 October 2021
  • Accepted Date:  02 December 2021
  • Available Online:  26 January 2022
  • Published Online:  05 April 2022
  • /

    返回文章
    返回
    Baidu
    map