Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Bi-directional semi-quantum secure direct communication protocol based on high-dimensional single-particle states

Gong Li-Hua Chen Zhen-Yong Xu Liang-Chao Zhou Nan-Run

Citation:

Bi-directional semi-quantum secure direct communication protocol based on high-dimensional single-particle states

Gong Li-Hua, Chen Zhen-Yong, Xu Liang-Chao, Zhou Nan-Run
cstr: 32037.14.aps.71.20211702
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Semi-quantum secure direct communication allows the quantum party and the classical party to transmit secure messages directly, but does not need sharing a secret key in advance. To increase the information transmission efficiency and practicability of semi-quantum secure direct communication, a bidirectional semi-quantum secure direct communication protocol with high-dimensional single-particle states is designed. The proposed protocol involves quantum party Alice and classical party Bob. Each participant can receive a secret message while sending a secret message. Unlike most of existing quantum secure direct communication protocols, it is not necessary for the classical party Bob in the proposed protocol to possess the capability of measuring quantum states, which greatly enhances the feasibility of the protocol. The protocol allows the classical party Bob to implement the unitary operations on particles and reorder the quantum sequence. Furthermore, the quantum party Alice and the classical party Bob can verify the correctness of the received secret message with the Hash function. Security analysis indicates that without being discovered by the legitimate participants, Eve cannot obtain the secret message with common attack, such as intercept-resend attack, measure-resend attack, tampering attack and entanglement-measure attack. Compared with the typical semi-quantum secure direct communication protocols, the proposed protocol has a high qubit efficiency of about 28.6%. In addition, the transmission efficiency of secret message is greatly enhanced, since the proposed protocol utilizes the high-dimensional single-particle states as the carrier of secret message.
      Corresponding author: Zhou Nan-Run, znr21@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61871205).
    [1]

    Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895Google Scholar

    [2]

    Li X H, Ghose S 2015 Phys. Rev. A 91 012320Google Scholar

    [3]

    杨璐, 马鸿洋, 郑超, 丁晓兰, 高健存, 龙桂鲁 2017 66 230303Google Scholar

    Yang L, Ma H Y, Zheng C, Ding X L, Gao J C, Long G L 2017 Acta Phys. Sin. 66 230303Google Scholar

    [4]

    Vlachou C, Krawec W, Mateus P, Paunković N, Souto A 2018 Quantum Inf. Process. 17 288Google Scholar

    [5]

    吴承峰, 杜亚男, 王金东, 魏正军, 秦晓娟, 赵峰, 张智明 2016 65 100302Google Scholar

    Wu C F, Du Y N, Wang J D, Wei Z J, Qin X J, Zhao F, Zhang Z M 2016 Acta Phys. Sin. 65 100302Google Scholar

    [6]

    安雪碧, 银振强, 韩正甫 2015 64 140303Google Scholar

    An X B, Yin Z Q, Han Z F 2015 Acta Phys. Sin. 64 140303Google Scholar

    [7]

    冯艳艳, 施荣华, 石金晶, 郭迎 2019 68 120302Google Scholar

    Feng Y Y, Shi R H, Shi J J, Guo Y 2019 Acta Phys. Sin. 68 120302Google Scholar

    [8]

    荣民希, 辛向军, 李发根 2020 69 190302Google Scholar

    Rong M X, Xin X J, Li F G 2020 Acta Phys. Sin. 69 190302Google Scholar

    [9]

    张沛, 周小清, 李智伟 2014 63 130301Google Scholar

    Zhang P, Zhou X Q, Li Z W 2014 Acta Phys. Sin. 63 130301Google Scholar

    [10]

    Chen F L, Zhang H, Chen S G, Cheng W T 2021 Quantum Inf. Process. 20 178Google Scholar

    [11]

    Jiang D H, Tang K K, Xu G B 2021 Int. J. Theor. Phys. 60 4122Google Scholar

    [12]

    Ma Z H, Chen J Y, Li Z, Tang C, Sua Y M, Fan H, Huang Y P 2020 Phys. Rev. Lett. 125 263602Google Scholar

    [13]

    Wang Q Q, Zheng Y, Zhai C H, Li X D, Gong Q H, Wang J W 2021 J. Semicond. 42 091901Google Scholar

    [14]

    Long G L, Liu X S 2002 Phys. Rev. A 65 032302Google Scholar

    [15]

    Boström K, Felbinger T 2002 Phys. Rev. Lett. 89 187902Google Scholar

    [16]

    Deng F G, Long G L, Liu X S 2003 Phys. Rev. A 68 042317Google Scholar

    [17]

    Deng F G, Long G L 2004 Phys. Rev. A 69 052319Google Scholar

    [18]

    Wang C, Deng F G, Li Y S, Liu X S, Long G L 2005 Phys. Rev. A 71 044305Google Scholar

    [19]

    Shi J, Gong Y X, Xu P, Zhu S N, Zhan Y B 2011 Commun. Theor. Phys. 56 831Google Scholar

    [20]

    郑晓毅 龙银香 2017 66 180303Google Scholar

    Zheng X Y, Long Y X 2017 Acta Phys. Sin. 66 180303Google Scholar

    [21]

    Chen S S, Zhou L, Zhong W, Sheng Y B 2018 Sci. Chin. -Phys. Mech. Astron. 61 90312Google Scholar

    [22]

    Gao Z K, Li T, Li Z H 2019 EPL 125 40004Google Scholar

    [23]

    Zhou L, Sheng Y B, Long G L 2020 Sci. Bull. 65 12Google Scholar

    [24]

    Sheng Y B, Zhou L, Long G L 2022 Sci. Bull. 67 367Google Scholar

    [25]

    Hu J Y, Yu B, Jing M Y, Xiao L T, Jia S T, Qin G Q, Long G L 2016 Light Sci. Appl. 5 e16144Google Scholar

    [26]

    Zhang W, Ding D S, Sheng Y B, Zhou L, Shi B S, Guo G C 2017 Phys. Rev. Lett. 118 220501Google Scholar

    [27]

    Zhu F, Zhang W, Sheng Y B, Huang Y D 2017 Sci. Bull. 62 1519Google Scholar

    [28]

    Qi Z T, Li Y H, Huang Y W, Feng J, Zheng Y L, Chen X F 2021 Light Sci. Appl. 10 183Google Scholar

    [29]

    Boyer M, Kenigsberg D, Mor T 2007 Phys. Rev. Lett. 99 140501Google Scholar

    [30]

    Zhou N R, Zhu K N, Bi W, Gong L H 2019 Quantum Inf. Process. 18 197Google Scholar

    [31]

    Tsai C W, Yang C W 2021 Sci. Rep. 11 23222Google Scholar

    [32]

    Han S Y, Huang Y T, Mi S, Qin X J, Wang J D, Yu Y F, Wei Z J, Zhang Z M 2021 EPJ Quantum Technol. 8 28Google Scholar

    [33]

    Jiang S Q, Zhou R G, Hu W W 2021 Int. J. Theor. Phys. 60 3353Google Scholar

    [34]

    Zhou N R, Xu Q D, Du N S, Gong L H 2021 Quantum Inf. Process. 20 124Google Scholar

    [35]

    Ye C Q, Li J, Chen X B, Yuan T 2021 Quantum Inf. Process. 20 262Google Scholar

    [36]

    Zou X F, Qiu D W 2014 Sci. Chin. -Phys. Mech. Astron. 57 1696Google Scholar

    [37]

    Gu J, Lin P H, Hwang T 2018 Quantum Inf. Process. 17 182Google Scholar

    [38]

    Zhang M H, Li H F, Xia Z Q, Feng X Y, Peng J Y 2017 Quantum Inf. Process. 16 117Google Scholar

    [39]

    Xie C, Li L Z, Situ H Z, He J H 2018 Int. J. Theor. Phys. 57 1881Google Scholar

    [40]

    Sun Y H, Yan L L, Chang Y, Zhang S B, Shao T T, Zhang Y 2019 Mod. Phys. Lett. A 34 1950004

    [41]

    Rong Z B, Qiu D W, Zou X F 2020 Int. J. Theor. Phys. 59 1807Google Scholar

    [42]

    Ye C Q, Ye T Y, He D, Gan Z G 2019 Int. J. Theor. Phys. 58 3797Google Scholar

    [43]

    Wen X J, Zhao X Q, Gong L H, Zhou N R 2019 Laser Phys. Lett. 16 075206Google Scholar

  • 图 1  窃听检测概率

    Figure 1.  Eavesdropping detection probability.

    图 2  单粒子传输秘密信息-维数

    Figure 2.  Single particle transport secret information - dimension.

    表 1  操作后粒子的分类

    Table 1.  Classification of the particles after operation.

    原始状态所属基Bob的操作标记为
    $\overline Z $CTRL$\overline Z - {\text{CTRL}}$
    $\overline Z $${U_m}$$\overline Z - U$
    $\overline X $CTRL$\overline X - {\text{CTRL}}$
    $\overline X $${U_m}$$\overline X - U$
    DownLoad: CSV

    表 2  Alice的窃听检测策略

    Table 2.  Eavesdropping detection strategy for Alice.

    原始状态Bob的操作Alice的操作预期结果
    $\left| k \right\rangle $CTRL$\overline Z $基测量$\left| k \right\rangle $
    $\left| k \right\rangle $${U_m}$$\overline Z $基测量$\left| {k \oplus m} \right\rangle $
    $F\left| k \right\rangle $CTRL$\overline X $基测量$F\left| k \right\rangle $
    $F\left| k \right\rangle $${U_m}$$\overline X $基测量$F\left| k \right\rangle $
    DownLoad: CSV

    表 3  Eve的截获重发攻击

    Table 3.  Intercept-resend attack by Eve.

    Alice发送的粒子Bob的操作Eve的操作Alice的操作窃听是否会被发现
    $\overline Z $CTRLCTRL用$\overline Z $基测量
    $\overline Z $CTRL${U_m}$用$\overline Z $基测量
    $\overline Z $${U_m}$CTRL用$\overline Z $基测量$\dfrac{ {d - 1} }{ {2 d} }$的概率被发现
    $\overline Z $${U_m}$${U_m}$用$\overline Z $基测量$\dfrac{ {d - 1} }{ {2 d} }$的概率被发现
    $\overline X $CTRLCTRL用$\overline X $基测量
    $\overline X $CTRL${U_m}$用$\overline X $基测量
    $\overline X $${U_m}$CTRL用$\overline X $基测量
    $\overline X $${U_m}$${U_m}$用$\overline X $基测量
    DownLoad: CSV

    表 4  Eve的测量重发攻击

    Table 4.  Measurement-resend attack by Eve.

    Alice发送的粒子Eve的测量基Bob得到的粒子Bob的操作Alice的操作窃听是否被发现
    $\overline Z $$\overline Z $$\overline Z $CTRL$\overline Z $基测量
    $\overline Z $$\overline Z $$\overline Z $${U_m}$$\overline Z $基测量
    $\overline Z $$\overline X $$\overline X $CTRL$\overline Z $基测量$\dfrac{ {d - 1} }{d}$概率被发现
    $\overline Z $$\overline X $$\overline X $${U_m}$$\overline Z $基测量$\dfrac{ {d - 1} }{ {2 d} }$概率被发现
    $\overline X $$\overline Z $$\overline Z $CTRL$\overline X $基测量$\dfrac{ {d - 1} }{d}$概率被发现
    $\overline X $$\overline Z $$\overline Z $${U_m}$$\overline X $基测量$\dfrac{ {d - 1} }{d}$概率被发现
    $\overline X $$\overline X $$\overline X $CTRL$\overline X $基测量
    $\overline X $$\overline X $$\overline X $${U_m}$$\overline X $基测量
    DownLoad: CSV

    表 5  本协议与现有经典SQSDC协议的比较

    Table 5.  Comparison of the proposed protocol with existing classical SQSDC protocols.

    协议文献[36]文献[38]协议一[40]协议二[40]本文协议
    量子载体二维单粒子态二维Bell态二维Bell态二维Bell态$d$维单粒子态
    通信模式单向单向单向单向双向
    经典方是否
    需要测量能力
    每粒子传输秘密信息(bit)1111${\log _2}d$
    量子通信协议效率(%)14.319.016.728.628.6
    DownLoad: CSV
    Baidu
  • [1]

    Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895Google Scholar

    [2]

    Li X H, Ghose S 2015 Phys. Rev. A 91 012320Google Scholar

    [3]

    杨璐, 马鸿洋, 郑超, 丁晓兰, 高健存, 龙桂鲁 2017 66 230303Google Scholar

    Yang L, Ma H Y, Zheng C, Ding X L, Gao J C, Long G L 2017 Acta Phys. Sin. 66 230303Google Scholar

    [4]

    Vlachou C, Krawec W, Mateus P, Paunković N, Souto A 2018 Quantum Inf. Process. 17 288Google Scholar

    [5]

    吴承峰, 杜亚男, 王金东, 魏正军, 秦晓娟, 赵峰, 张智明 2016 65 100302Google Scholar

    Wu C F, Du Y N, Wang J D, Wei Z J, Qin X J, Zhao F, Zhang Z M 2016 Acta Phys. Sin. 65 100302Google Scholar

    [6]

    安雪碧, 银振强, 韩正甫 2015 64 140303Google Scholar

    An X B, Yin Z Q, Han Z F 2015 Acta Phys. Sin. 64 140303Google Scholar

    [7]

    冯艳艳, 施荣华, 石金晶, 郭迎 2019 68 120302Google Scholar

    Feng Y Y, Shi R H, Shi J J, Guo Y 2019 Acta Phys. Sin. 68 120302Google Scholar

    [8]

    荣民希, 辛向军, 李发根 2020 69 190302Google Scholar

    Rong M X, Xin X J, Li F G 2020 Acta Phys. Sin. 69 190302Google Scholar

    [9]

    张沛, 周小清, 李智伟 2014 63 130301Google Scholar

    Zhang P, Zhou X Q, Li Z W 2014 Acta Phys. Sin. 63 130301Google Scholar

    [10]

    Chen F L, Zhang H, Chen S G, Cheng W T 2021 Quantum Inf. Process. 20 178Google Scholar

    [11]

    Jiang D H, Tang K K, Xu G B 2021 Int. J. Theor. Phys. 60 4122Google Scholar

    [12]

    Ma Z H, Chen J Y, Li Z, Tang C, Sua Y M, Fan H, Huang Y P 2020 Phys. Rev. Lett. 125 263602Google Scholar

    [13]

    Wang Q Q, Zheng Y, Zhai C H, Li X D, Gong Q H, Wang J W 2021 J. Semicond. 42 091901Google Scholar

    [14]

    Long G L, Liu X S 2002 Phys. Rev. A 65 032302Google Scholar

    [15]

    Boström K, Felbinger T 2002 Phys. Rev. Lett. 89 187902Google Scholar

    [16]

    Deng F G, Long G L, Liu X S 2003 Phys. Rev. A 68 042317Google Scholar

    [17]

    Deng F G, Long G L 2004 Phys. Rev. A 69 052319Google Scholar

    [18]

    Wang C, Deng F G, Li Y S, Liu X S, Long G L 2005 Phys. Rev. A 71 044305Google Scholar

    [19]

    Shi J, Gong Y X, Xu P, Zhu S N, Zhan Y B 2011 Commun. Theor. Phys. 56 831Google Scholar

    [20]

    郑晓毅 龙银香 2017 66 180303Google Scholar

    Zheng X Y, Long Y X 2017 Acta Phys. Sin. 66 180303Google Scholar

    [21]

    Chen S S, Zhou L, Zhong W, Sheng Y B 2018 Sci. Chin. -Phys. Mech. Astron. 61 90312Google Scholar

    [22]

    Gao Z K, Li T, Li Z H 2019 EPL 125 40004Google Scholar

    [23]

    Zhou L, Sheng Y B, Long G L 2020 Sci. Bull. 65 12Google Scholar

    [24]

    Sheng Y B, Zhou L, Long G L 2022 Sci. Bull. 67 367Google Scholar

    [25]

    Hu J Y, Yu B, Jing M Y, Xiao L T, Jia S T, Qin G Q, Long G L 2016 Light Sci. Appl. 5 e16144Google Scholar

    [26]

    Zhang W, Ding D S, Sheng Y B, Zhou L, Shi B S, Guo G C 2017 Phys. Rev. Lett. 118 220501Google Scholar

    [27]

    Zhu F, Zhang W, Sheng Y B, Huang Y D 2017 Sci. Bull. 62 1519Google Scholar

    [28]

    Qi Z T, Li Y H, Huang Y W, Feng J, Zheng Y L, Chen X F 2021 Light Sci. Appl. 10 183Google Scholar

    [29]

    Boyer M, Kenigsberg D, Mor T 2007 Phys. Rev. Lett. 99 140501Google Scholar

    [30]

    Zhou N R, Zhu K N, Bi W, Gong L H 2019 Quantum Inf. Process. 18 197Google Scholar

    [31]

    Tsai C W, Yang C W 2021 Sci. Rep. 11 23222Google Scholar

    [32]

    Han S Y, Huang Y T, Mi S, Qin X J, Wang J D, Yu Y F, Wei Z J, Zhang Z M 2021 EPJ Quantum Technol. 8 28Google Scholar

    [33]

    Jiang S Q, Zhou R G, Hu W W 2021 Int. J. Theor. Phys. 60 3353Google Scholar

    [34]

    Zhou N R, Xu Q D, Du N S, Gong L H 2021 Quantum Inf. Process. 20 124Google Scholar

    [35]

    Ye C Q, Li J, Chen X B, Yuan T 2021 Quantum Inf. Process. 20 262Google Scholar

    [36]

    Zou X F, Qiu D W 2014 Sci. Chin. -Phys. Mech. Astron. 57 1696Google Scholar

    [37]

    Gu J, Lin P H, Hwang T 2018 Quantum Inf. Process. 17 182Google Scholar

    [38]

    Zhang M H, Li H F, Xia Z Q, Feng X Y, Peng J Y 2017 Quantum Inf. Process. 16 117Google Scholar

    [39]

    Xie C, Li L Z, Situ H Z, He J H 2018 Int. J. Theor. Phys. 57 1881Google Scholar

    [40]

    Sun Y H, Yan L L, Chang Y, Zhang S B, Shao T T, Zhang Y 2019 Mod. Phys. Lett. A 34 1950004

    [41]

    Rong Z B, Qiu D W, Zou X F 2020 Int. J. Theor. Phys. 59 1807Google Scholar

    [42]

    Ye C Q, Ye T Y, He D, Gan Z G 2019 Int. J. Theor. Phys. 58 3797Google Scholar

    [43]

    Wen X J, Zhao X Q, Gong L H, Zhou N R 2019 Laser Phys. Lett. 16 075206Google Scholar

Metrics
  • Abstract views:  6236
  • PDF Downloads:  126
  • Cited By: 0
Publishing process
  • Received Date:  12 September 2021
  • Accepted Date:  14 March 2022
  • Available Online:  12 July 2022
  • Published Online:  05 July 2022
  • /

    返回文章
    返回
    Baidu
    map