Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Citation:

Ridge-type suspended waveguide Brillouin laser

Wang Wu-Yue, Yu Yu, Li Yun-Fei, Wang Gong, Li Kai, Wang Zhi-Yong, Song Chang-Yu, Li Sen-Sen, Li Yu-Hai, Liu Tong-Yu, Yan Xiu-Sheng, Wang Yu-Lei, Lü Zhi-Wei
cstr: 32037.14.aps.71.20211539
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • As is well known, the on-chip waveguide with high Brillouin gain has many applications in the field of photonics. Brillouin lasers on silicon substrates are widely used in frequency tunable laser emission, mode-locked pulsed lasers, low-noise oscillators and optical gyroscopes. However, in a silicon-based Brillouin laser, a long waveguide length is still used to achieve Brillouin laser output, which is not conducive to on-chip integration. In this work is proposed a new type of waveguide structure consisting of chalcogenide As2S3 rectangles and an air slit. Owing to the existence of the air gap, the radiation pressure makes the enhancement of Brillouin nonlinearity much higher than the enhancement caused only by the material nonlinearity. This makes the Brillouin gain reach 1.78 × 105 W–1·m–1, which is nearly 10 times larger than the previously reported backward SBS gain of 2.88 × 104 W–1·m–1, resulting in phonon frequency tuning in a 4.2–7.0 GHz range. This method provides a new idea for designing nano-scaled optical waveguides for forward stimulated Brillouin scattering, and at the same time, this enhanced broadband coherent phonon emission paves the way for improving the hybrid on-chip CMOS signal processing technology.
      Corresponding author: Yu Yu, yuyu1990@hebut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62075056, 62004059, 62005074, 61927815) and the Key Laboratory Fund Project, China (Grant No. 61421070302).
    [1]

    Stiller B, Foaleng S M, Beugnot J C, Lee M W, Delque M, Bouwmans G, Kudlinski A, Thevenaz L, Maillotte H, Sylvestre T 2010 Opt. Express 18 20136Google Scholar

    [2]

    Chin S, Primerov N, Thevenaz L 2012 IEEE Sens. J. 12 189Google Scholar

    [3]

    Chin S, Gonzalez H M, Thevenaz L 2006 Opt. Express 14 10684Google Scholar

    [4]

    Boyd R W, Gauthier D J 2009 Science 326 1074Google Scholar

    [5]

    Chin S, Thevenaz L, Sancho J, Sales S, Capmany J, Berger P, Bourderionnet J, Dolfi D 2010 Opt. Express 18 22599Google Scholar

    [6]

    Sancho J, Chin S, Sagues M, Loayssa A, Lloret J, Gasulla I, Sales S, Thevenaz L, Capmany J 2010 IEEE Photonics Technol. Lett. 22 1753Google Scholar

    [7]

    Sancho J, Primerov N, Chin S, Antman Y, Zadok A, Sales S, Thevenaz L 2012 Opt. Express 20 6157Google Scholar

    [8]

    Gundavarapu S, Brodnik G M, Puckett M, Huffman T, Bose D, Behunin R, Wu J F, Qiu T Q, Pinho C, Chauhan N, Nohava J, Rakich P T, Nelson K D, Salit M, Blumenthal D J 2018 Nat. Photonics 13 60

    [9]

    Tow K H, Leguillon Y, Besnard P, Brilland L, Troles J, Toupin P, Mechin D, Tregoat D, Molin S 2012 Opt. Lett. 37 1157Google Scholar

    [10]

    Eggleton B J, Poulton C G, Pant R 2013 Adv. Opt. Photonics 5 536Google Scholar

    [11]

    Laer R V, Kuyken B, Thourhout D V, Baets R 2014 Opt. Lett. 39 1242Google Scholar

    [12]

    Jouybari S N 2018 Photonics Nanostruct. 29 8Google Scholar

    [13]

    Zhou L, Lu Y G, Fu Y Y, Ma H X, Du C L 2019 Opt. Express 27 24953Google Scholar

    [14]

    Parameswaran K R, Route R K, Kurz J R, Roussev R V, Fejer M M, Fujimura M 2002 Opt. Lett. 27 179Google Scholar

    [15]

    Miller G D, Batchko R G, Tulloch W M, Fejer M M, Byer R L 1997 Opt. Lett. 22 1834Google Scholar

    [16]

    Eggleton B J, Poulton C G, Rakich P T, Steel M J, Bahl G 2019 Nat. Photonics 13 1Google Scholar

    [17]

    Agrawal G P 2005 Lect. Notes Phys. 18 1

    [18]

    Damzen M J, Vlad V I, Babin V, Mocofanescu A 2010 CRC Press 33 26

    [19]

    Mirnaziry S R, Wolff C, Steel M J, Eggleton B J, Poulton C G 2016 Opt. Express 24 4786

    [20]

    Qiu W, Rakich P T, Shin H, Dong H, Soljačić M, Wang Z 2013 Opt. Express 21 31402Google Scholar

    [21]

    Aryanfar I, Wolff C, Steel M J, Eggleton B J, Poulton C G 2014 Opt. Express 22 29270Google Scholar

    [22]

    Yu Z, Sun X 2018 Opt. Express 26 1255Google Scholar

    [23]

    Rakich P T, Davids P, Wang Z 2010 Opt. Express 18 14439Google Scholar

    [24]

    Chiao R, Townes C, Stoicheff B 1964 Phys. Rev. Lett. 12 592Google Scholar

  • 图 1  (a)悬浮波导系统的结构示意图; (b)悬浮波导设计图, t=215 nm, w=800 nm, 空气细缝长度s = 2 nm, 高度h = 213 nm; (c)光学色散图示意图, 光共振由沿着整体色散曲线(实线)的离散点(红色和蓝色)表示; (d)泵浦光转换为Stokes光和声子示意图. 图中kskp分别代表Stoke光和泵浦光的波矢; ωs, ωp, Ω分别代表Stokes光、泵浦光以及产生的声子频率

    Figure 1.  (a) Schematic diagram of the structure of the suspended waveguide system; (b) design drawing of floating waveguide, t = 215 nm, w = 800 m, air slit length s = 2 nm, height h=213 nm; (b) schematic diagram of optical dispersion diagram, optical resonance is represented by discrete points (red and blue) along the overall dispersion curve (solid line); (d) schematic diagram of pump light conversion to stokes light and phonons. In the figure, ks and kp represent the wave vectors of stoke light and pump light, respectively. ωs, ωp, and Ω represent Stokes light, pump light, and generated phonon frequencies, respectively.

    图 2  波导的光学模式和辐射压力分布 (a)左侧辐射压力分布示意图; (b)−(d) Ex, EyEz场分量的基本光学模式的导向横向轮廓

    Figure 2.  Optical mode and radiation pressure distribution of the waveguide: (a) Schematic diagram of the radiation pressure distribution on the left; (b)−(d) guiding lateral profiles of the fundamental optical modes of the Ex, Ey and Ez field components.

    图 3  (a)不同声学模式下的声子振型图; (b) Q = 1000时, 不同声学模式下对应的布里渊增益

    Figure 3.  (a) Phonon shape diagram under different acoustic modes; (b) when Q = 1000, the corresponding Brillouin gain under different acoustic modes.

    图 4  悬浮波导的6种声学模式. 显示了ux, uy分量的归一化最低一阶至六阶混合声波(E1−E6)的横向剖面

    Figure 4.  Six acoustic modes of a suspended waveguide, showing the transverse section of the normalized mixed sound waves (E1−E6) of lowest first to sixth order of the ux and uy components.

    图 5  悬浮波导结构中光声耦合速率随波导长度变化的有限元模拟

    Figure 5.  Finite element simulation of the photoacoustic coupling rate varying with the length of the waveguide in the suspended waveguide structure.

    Baidu
  • [1]

    Stiller B, Foaleng S M, Beugnot J C, Lee M W, Delque M, Bouwmans G, Kudlinski A, Thevenaz L, Maillotte H, Sylvestre T 2010 Opt. Express 18 20136Google Scholar

    [2]

    Chin S, Primerov N, Thevenaz L 2012 IEEE Sens. J. 12 189Google Scholar

    [3]

    Chin S, Gonzalez H M, Thevenaz L 2006 Opt. Express 14 10684Google Scholar

    [4]

    Boyd R W, Gauthier D J 2009 Science 326 1074Google Scholar

    [5]

    Chin S, Thevenaz L, Sancho J, Sales S, Capmany J, Berger P, Bourderionnet J, Dolfi D 2010 Opt. Express 18 22599Google Scholar

    [6]

    Sancho J, Chin S, Sagues M, Loayssa A, Lloret J, Gasulla I, Sales S, Thevenaz L, Capmany J 2010 IEEE Photonics Technol. Lett. 22 1753Google Scholar

    [7]

    Sancho J, Primerov N, Chin S, Antman Y, Zadok A, Sales S, Thevenaz L 2012 Opt. Express 20 6157Google Scholar

    [8]

    Gundavarapu S, Brodnik G M, Puckett M, Huffman T, Bose D, Behunin R, Wu J F, Qiu T Q, Pinho C, Chauhan N, Nohava J, Rakich P T, Nelson K D, Salit M, Blumenthal D J 2018 Nat. Photonics 13 60

    [9]

    Tow K H, Leguillon Y, Besnard P, Brilland L, Troles J, Toupin P, Mechin D, Tregoat D, Molin S 2012 Opt. Lett. 37 1157Google Scholar

    [10]

    Eggleton B J, Poulton C G, Pant R 2013 Adv. Opt. Photonics 5 536Google Scholar

    [11]

    Laer R V, Kuyken B, Thourhout D V, Baets R 2014 Opt. Lett. 39 1242Google Scholar

    [12]

    Jouybari S N 2018 Photonics Nanostruct. 29 8Google Scholar

    [13]

    Zhou L, Lu Y G, Fu Y Y, Ma H X, Du C L 2019 Opt. Express 27 24953Google Scholar

    [14]

    Parameswaran K R, Route R K, Kurz J R, Roussev R V, Fejer M M, Fujimura M 2002 Opt. Lett. 27 179Google Scholar

    [15]

    Miller G D, Batchko R G, Tulloch W M, Fejer M M, Byer R L 1997 Opt. Lett. 22 1834Google Scholar

    [16]

    Eggleton B J, Poulton C G, Rakich P T, Steel M J, Bahl G 2019 Nat. Photonics 13 1Google Scholar

    [17]

    Agrawal G P 2005 Lect. Notes Phys. 18 1

    [18]

    Damzen M J, Vlad V I, Babin V, Mocofanescu A 2010 CRC Press 33 26

    [19]

    Mirnaziry S R, Wolff C, Steel M J, Eggleton B J, Poulton C G 2016 Opt. Express 24 4786

    [20]

    Qiu W, Rakich P T, Shin H, Dong H, Soljačić M, Wang Z 2013 Opt. Express 21 31402Google Scholar

    [21]

    Aryanfar I, Wolff C, Steel M J, Eggleton B J, Poulton C G 2014 Opt. Express 22 29270Google Scholar

    [22]

    Yu Z, Sun X 2018 Opt. Express 26 1255Google Scholar

    [23]

    Rakich P T, Davids P, Wang Z 2010 Opt. Express 18 14439Google Scholar

    [24]

    Chiao R, Townes C, Stoicheff B 1964 Phys. Rev. Lett. 12 592Google Scholar

Metrics
  • Abstract views:  8699
  • PDF Downloads:  179
  • Cited By: 0
Publishing process
  • Received Date:  22 August 2021
  • Accepted Date:  14 September 2021
  • Available Online:  13 January 2022
  • Published Online:  20 January 2022
  • /

    返回文章
    返回
    Baidu
    map