Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Electro-optic tunable directional coupler based on a LiNbO3/Na surface plasmonic waveguide

Ma Tao Ma Jia-He Liu Heng Tian Yong-Sheng Liu Shao-Hui Wang Fang

Citation:

Electro-optic tunable directional coupler based on a LiNbO3/Na surface plasmonic waveguide

Ma Tao, Ma Jia-He, Liu Heng, Tian Yong-Sheng, Liu Shao-Hui, Wang Fang
cstr: 32037.14.aps.71.20211217
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • To meet the increasing demand of integrated photonic device design, a LiNbO3/Na surface plasmonic waveguide (LNSPW) is demonstrated, and a directional coupler (DC) based on the LNSPW is also studied. The mode characteristics of the LNSPW and the coupling performances of the DC are simulated by the finite element method (FEM). There are four modes in the LNSPW when its width (w1) and the thickness (h1) are less than 600 nm and 400 nm, respectively. The number of the modes in the LNSPW increases with waveguide size increasing. To achieve the single-mode propagation, w1 and h1 are chosen to be 300 nm and 200 nm, respectively. The effective refractive index (neff), propagation length (Lp), and normalized effective mode area (Aeff/A0) are analyzed with different dimensional parameters of the LNSPW. The value of Lp is ~200 μm, and Aeff/A0 is less than 0.4. In order to demonstrate the electro-optic tunable performance, the normalized output power (Pnorm) values of the DC are calculated based on the LNSPWs with different values of coupling interval (Wgap), coupling length (LC), and operating wavlength (λ). The Pnorm values of the output ports (port 2 and port 3) vary with Wgap and LC. Owing to the electro-optic effect of LiNbO3 (LN), Pnorm of the DC can be adjusted by changing the applied electrostatic voltage (V0). The influence of V0 on Pnorm increases when Wgap is larger than 100 nm and LC is greater than 12 μm. The larger the value of LC and Wgap, the stronger the effect of V0 on Pnorm is, but Pnorm values from two output ports decrease with Wgap and LC increasing. A 3 dB coupler can be achieved by changing V0 to 53 V when Wgap = ~100 nm, LC = ~17 μm, and λ = 1.55 μm, and has good directivity and isolation. The LNSPW provides a feasible scheme to realize the tunable DC, and has potential applications in integratable electro-optic tuanble devices, nonlinear optics, optical signal processing, and optical holographic storage.
      Corresponding author: Liu Heng, hengmaggie@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62075057) and the Doctoral Program of Henan Normal University, China (Grant Nos. gd17167, 5101239170010)
    [1]

    Zhang Q, Li M, Xu J, Lin Z J, Yu H F, Wang M, Fang Z W, Cheng Y, Gong Q H, Li Y 2019 Photonics Res. 7 503Google Scholar

    [2]

    刘时杰, 郑远林, 陈险峰 2021 光学学报 41 0823013Google Scholar

    Liu S J, Zheng Y L, Chen X F 2021 Acta Opt. Sin. 41 0823013Google Scholar

    [3]

    Wang C, Zhang M, Chen X, Bertrand M, Shams-Ansari A, Chandrasekhar S, Winzer P, Lončar M 2018 Nature 562 101Google Scholar

    [4]

    Kues M, Reimer C, Roztocki P, Cortés L R, Sciara S, Wetzel B, Zhang Y B, Cino A, Chu S T, Little B E, Moss D J, Caspani L, Azaña J, Morandotti R 2017 Nature 546 622Google Scholar

    [5]

    Janner D, Tulli D, García-Granda M, Belmonte M, Pruneri V 2009 Laser Photonics Rev. 3 301Google Scholar

    [6]

    李庚霖, 贾曰辰, 陈峰 2020 69 157801Google Scholar

    Li G L, Jia Y C, Chen F 2020 Acta Phys. Sin. 69 157801Google Scholar

    [7]

    Poberaj G, Hu H, Sohler W, Günter P 2012 Laser Photonics Rev. 6 488Google Scholar

    [8]

    Levy M, Osgood R M, Liu R, Cross L E, Cargill G S, Kumar A, Bakhru H 1998 Appl. Phys. Lett. 73 2293Google Scholar

    [9]

    Wang C, Burek M J, Lin Z, Atikian H A, Venkataraman V, Huang I C, Stark P, Lončar M 2014 Opt. Express 22 30924Google Scholar

    [10]

    Zhang M, Wang C, Cheng R, Shams-Ansari A, Lončar M 2017 Optica 4 1536Google Scholar

    [11]

    Lin J T, Xu Y X, Fang Z W, Wang M, Wang N W, Qiao L L, Fang W, Cheng Y 2015 Sci. China-Phys. Mech. Astron. 58 114209Google Scholar

    [12]

    Wu R B, Zhang J H, Yao N, Fang W, Qiao L L, Chai Z F, Lin J T, Cheng Y 2018 Opt. Lett. 43 4116Google Scholar

    [13]

    乔玲玲, 汪旻, 伍荣波, 方致伟, 林锦添, 储蔚, 程亚 2021 光学学报 41 0823012Google Scholar

    Qiao L L, Wang M, Wu R B, Fang Z W, Lin J T, Chu W, Cheng Y 2021 Acta Opt. Sin. 41 0823012Google Scholar

    [14]

    Wu R B, Wang M, Xu J, Qi J, Chu W, Fang Z W, Zhang J H, Zhou J X, Qiao L L, Chai Z F, Lin J T, Cheng Y 2018 Nanomaterials 8 910Google Scholar

    [15]

    Lin J T, Yao N, Hao Z Z, Zhang J H, Mao W B, Wang M, Chu W, Wu R B, Fang Z W, Qiao L L, Fang W, Bo F, Cheng Y 2019 Phys. Rev. Lett. 122 173903Google Scholar

    [16]

    Jia Y C, Wang L, Chen F 2021 Appl. Phys. Rev. 8 011307Google Scholar

    [17]

    Yang L K, Li P, Wang H C, Li Z P 2018 Chin. Phys. B 27 094216Google Scholar

    [18]

    Boltasseva A, Atwater H A 2011 Science 331 290Google Scholar

    [19]

    Khurgin J B 2015 Nat. Nanotechnol. 10 2Google Scholar

    [20]

    Naik G V, Shalaev V M, Boltasseva A 2013 Adv. Mater. 25 3264Google Scholar

    [21]

    Prucha E J, Palik E D 1998 Handbook of Optical Constants of Solids II (London: Academic Press) p354

    [22]

    Wang Y, Yu J Y, Mao Y F, Chen J, Wang S, Chen H Z, Zhang Y, Wang S Y, Chen X J, Li T, Zhou L, Ma R M, Zhu S N, Cai W S, Zhu J 2020 Nature 581 401Google Scholar

    [23]

    Tsilipakos O, Yioultsis T V, Kriezis E E 2009 J. Hazard Mater. 106 93109

    [24]

    Jiang A Q, Geng W P, Lv P, Hong J W, Jiang J, Wang C, Chai X J, Lian J W, Zhang Y, Huang R, Zhang D W, Scott J F, Hwang C S 2020 Nat. Mater. 19 1188Google Scholar

  • 图 1  (a) x-y平面内的LNSPW截面图; (b) 电势分布图, V0 = 100 V

    Figure 1.  (a) Cross section of the LNSPW in the x-y plane; (b) potential distribution as V0 = 100 V.

    图 2  (a) 不同λ时, Na的折射率实部Re(nNa)和虚部Im(nNa). 模场分布图 (b) 基模(FM); (c) 二阶模(SM); (d) 三阶模(TM); (e) 类传导模(GM). (f)FM沿y轴的模场分布

    Figure 2.  (a) Re(nNa) and Im(nNa) of Na with different λ. Mode field distributions of the (b) FM, (c) SM, (d) TM and (e) GM; (f) mode field distribution of the FM along y axis.

    图 3  Re(neff)随不同w1h1的变化规律 (a) h1 = 100 nm; (b) h1 = 200 nm; (c) h1 = 300 nm; (d) h1 = 400 nm

    Figure 3.  Re(neff) as functions of w1 and h1: (a) h1 = 100 nm; (b) h1 = 200 nm; (c) h1 = 300 nm; (d) h1 = 400 nm.

    图 4  LPw1h1的变化规律 (a) h1 = 100 nm; (b) h1 = 200 nm; (c) h1 = 300 nm; (d) h1 = 400 nm

    Figure 4.  LP with different w1 and h1: (a) h1 = 100 nm; (b) h1 = 200 nm; (c) h1 = 300 nm; (d) h1 = 400 nm.

    图 5  Aeff/A0w1h1的变化规律 (a) h1 = 100 nm; (b) h1 = 200 nm; (c) h1 = 300 nm; (d) h1 = 400 nm

    Figure 5.  Influences of w1 and h1 on Aeff/A0: (a) h1 = 100 nm; (b) h1 = 200 nm; (c) h1 = 300 nm; (d) h1 = 400 nm.

    图 6  (a) LNSPW构成的电光可调DC示意图; (b) DC x-y截面; (c) DC x-z截面

    Figure 6.  (a) Schematic of the electro-optic tunable DC based on the LNSPW: (b) DC cross section in x-y plane; (c) DC cross section in x-z plane.

    图 7  (a) LNSPW构成的DC端口2和端口3的PnormLCV0的变化图; (b) LC = 17 μm时, 端口2和端口3的Pnorm

    Figure 7.  Pnorm of the Port 2 and Port 3 in the DC based on the LNSPW (a) with different LC and V0, and (b) with different V0 as LC = 17 μm.

    图 8  LNSPW构成的DC的电场分布图 (a) V0 = 0 V; (b) V0 = 53 V; (c) V0 = 90 V

    Figure 8.  Mode field distributions of the DC based on the LNSPW: (a) V0 = 0 V; (b) V0 = 53 V; (c) V0 = 90 V.

    图 9  不同LCV0时, WgapPnorm的影响 (a) LC = 5.3 μm; (b) LC = 12 μm; (c) LC = 17 μm

    Figure 9.  Pnorm as a function of Wgap with different LC and V0: (a) LC = 5.3 μm; (b) LC = 12 μm; (c) LC = 17 μm.

    图 10  不同λ时, Pnorm随(a) LC和(b) Wgap的变化

    Figure 10.  Pnorm as functions of (a) LC and (b) Wgap with different λ.

    图 11  V0定向耦合的性能指标的影响 (a) SR和IL; (b) LTHP, LTP, LDILIS

    Figure 11.  Influences of V0 on the performances of the DC based on the LNSPW: (a) SR and IL; (b) LTHP, LTP, LDI, and LIS.

    Baidu
  • [1]

    Zhang Q, Li M, Xu J, Lin Z J, Yu H F, Wang M, Fang Z W, Cheng Y, Gong Q H, Li Y 2019 Photonics Res. 7 503Google Scholar

    [2]

    刘时杰, 郑远林, 陈险峰 2021 光学学报 41 0823013Google Scholar

    Liu S J, Zheng Y L, Chen X F 2021 Acta Opt. Sin. 41 0823013Google Scholar

    [3]

    Wang C, Zhang M, Chen X, Bertrand M, Shams-Ansari A, Chandrasekhar S, Winzer P, Lončar M 2018 Nature 562 101Google Scholar

    [4]

    Kues M, Reimer C, Roztocki P, Cortés L R, Sciara S, Wetzel B, Zhang Y B, Cino A, Chu S T, Little B E, Moss D J, Caspani L, Azaña J, Morandotti R 2017 Nature 546 622Google Scholar

    [5]

    Janner D, Tulli D, García-Granda M, Belmonte M, Pruneri V 2009 Laser Photonics Rev. 3 301Google Scholar

    [6]

    李庚霖, 贾曰辰, 陈峰 2020 69 157801Google Scholar

    Li G L, Jia Y C, Chen F 2020 Acta Phys. Sin. 69 157801Google Scholar

    [7]

    Poberaj G, Hu H, Sohler W, Günter P 2012 Laser Photonics Rev. 6 488Google Scholar

    [8]

    Levy M, Osgood R M, Liu R, Cross L E, Cargill G S, Kumar A, Bakhru H 1998 Appl. Phys. Lett. 73 2293Google Scholar

    [9]

    Wang C, Burek M J, Lin Z, Atikian H A, Venkataraman V, Huang I C, Stark P, Lončar M 2014 Opt. Express 22 30924Google Scholar

    [10]

    Zhang M, Wang C, Cheng R, Shams-Ansari A, Lončar M 2017 Optica 4 1536Google Scholar

    [11]

    Lin J T, Xu Y X, Fang Z W, Wang M, Wang N W, Qiao L L, Fang W, Cheng Y 2015 Sci. China-Phys. Mech. Astron. 58 114209Google Scholar

    [12]

    Wu R B, Zhang J H, Yao N, Fang W, Qiao L L, Chai Z F, Lin J T, Cheng Y 2018 Opt. Lett. 43 4116Google Scholar

    [13]

    乔玲玲, 汪旻, 伍荣波, 方致伟, 林锦添, 储蔚, 程亚 2021 光学学报 41 0823012Google Scholar

    Qiao L L, Wang M, Wu R B, Fang Z W, Lin J T, Chu W, Cheng Y 2021 Acta Opt. Sin. 41 0823012Google Scholar

    [14]

    Wu R B, Wang M, Xu J, Qi J, Chu W, Fang Z W, Zhang J H, Zhou J X, Qiao L L, Chai Z F, Lin J T, Cheng Y 2018 Nanomaterials 8 910Google Scholar

    [15]

    Lin J T, Yao N, Hao Z Z, Zhang J H, Mao W B, Wang M, Chu W, Wu R B, Fang Z W, Qiao L L, Fang W, Bo F, Cheng Y 2019 Phys. Rev. Lett. 122 173903Google Scholar

    [16]

    Jia Y C, Wang L, Chen F 2021 Appl. Phys. Rev. 8 011307Google Scholar

    [17]

    Yang L K, Li P, Wang H C, Li Z P 2018 Chin. Phys. B 27 094216Google Scholar

    [18]

    Boltasseva A, Atwater H A 2011 Science 331 290Google Scholar

    [19]

    Khurgin J B 2015 Nat. Nanotechnol. 10 2Google Scholar

    [20]

    Naik G V, Shalaev V M, Boltasseva A 2013 Adv. Mater. 25 3264Google Scholar

    [21]

    Prucha E J, Palik E D 1998 Handbook of Optical Constants of Solids II (London: Academic Press) p354

    [22]

    Wang Y, Yu J Y, Mao Y F, Chen J, Wang S, Chen H Z, Zhang Y, Wang S Y, Chen X J, Li T, Zhou L, Ma R M, Zhu S N, Cai W S, Zhu J 2020 Nature 581 401Google Scholar

    [23]

    Tsilipakos O, Yioultsis T V, Kriezis E E 2009 J. Hazard Mater. 106 93109

    [24]

    Jiang A Q, Geng W P, Lv P, Hong J W, Jiang J, Wang C, Chai X J, Lian J W, Zhang Y, Huang R, Zhang D W, Scott J F, Hwang C S 2020 Nat. Mater. 19 1188Google Scholar

Metrics
  • Abstract views:  7812
  • PDF Downloads:  139
  • Cited By: 0
Publishing process
  • Received Date:  30 June 2021
  • Accepted Date:  29 November 2021
  • Available Online:  26 January 2022
  • Published Online:  05 March 2022
  • /

    返回文章
    返回
    Baidu
    map