Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A quantum state readout method based on a single ancilla qubit

Ding Chen Li Tan Zhang Shuo Guo Chu Huang He-Liang Bao Wan-Su

Citation:

A quantum state readout method based on a single ancilla qubit

Ding Chen, Li Tan, Zhang Shuo, Guo Chu, Huang He-Liang, Bao Wan-Su
cstr: 32037.14.aps.70.20211066
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Quantum state measurement is essential for reading-out a quantum computing outcome. Meanwhile, the readout results are always affected by the large noise of quantum measurements in physical implementation, which also hinders the large-scale expansion of quantum computing. In light of this, we present an indirect quantum state readout method based on a single ancilla qubit that can avoid the large noise of multiple-qubit measurements. The theoretical analysis and simulations indicate that our method is more robust against the measurement noise and promises to become a method of large-scale quantum error correction and high-fidelity quantum state readout.
      Corresponding author: Huang He-Liang, quanhhl@ustc.edu.cn ; Bao Wan-Su, bws@qiclab.cn
    • Funds: Project supported by the Youth Talent Lifting Project, China (Grant No. 2020-JCJQ-QT-030), the National Natural Science Foundation of China (Grant Nos. 11905294, 11805279), the Open Research Fund from State Key Laboratory for High Performance Computing, National University of Defense Technology, China (Grant No. 201901-01), and the China Postdoctoral Science Foundation.
    [1]

    Shor P W 1994 Proceedings 35th Annual Symposium Foundations Computer Science Santa Fe, New Mexico, USA, November 20–22, 1994 pp124–134

    [2]

    Grover L K 1996 Proceedings 28th Annual ACM Symposium Theory Computing Philadelphia, Pennsylvania, USA, May 22–24, 1996 pp212–219

    [3]

    Harrow A W, Hassidim A, Lloyd S 2009 Phys. Rev. Lett. 103 150502Google Scholar

    [4]

    Clarke J, Wilhelm F K 2008 Nature 453 1031Google Scholar

    [5]

    Huang H L, Narożniak M, Liang F, Zhao Y, Castellano A D, Gong M, Wu Y, Wang S, Lin J, Xu Y, Deng H, Rong H, Dowling J P, Peng C Z, Byrnes T, Zhu X, Pan J W 2021 Phys. Rev. Lett. 126 090502Google Scholar

    [6]

    Huang H L, Wu D, Fan D, Zhu X 2020 Sci. China Inf. Sci. 63 180501Google Scholar

    [7]

    Kjaergaard M, Schwartz M E, Braumjller J, Krantz P, Wang J I J, Gustavsson S, Oliver W D 2020 Annu. Rev. Condens. Matter Phys. 11 369Google Scholar

    [8]

    Krantz P, Kjaergaard M, Yan F, Orlando T P, Gustavsson S, Oliver W D 2019 Appl. Phys. Rev. 6 021318Google Scholar

    [9]

    Gu X, Kockum A F, Miranowicz A, Liu Y X, Nori F 2017 Phys. Rep. 718–719 1Google Scholar

    [10]

    Wendin G 2017 Rep. Prog. Phys. 80 106001Google Scholar

    [11]

    You J Q, Nori F 2005 Phys. Today 58 42Google Scholar

    [12]

    You J Q, Nori F 2011 Nature 474 589Google Scholar

    [13]

    Nation P D, Johansson J R, Blencowe M P, Nori F 2012 Rev. Mod. Phys. 84 1Google Scholar

    [14]

    O’Brien J L, Furusawa A, Vučković J 2009 Nat. Photonics 3 687Google Scholar

    [15]

    Liu C, Huang H L, Chen C, Wang B Y, Wang X L, Yang T, Li L, Liu N L, Dowling J P, Byrnes T, Lu C Y, Pan J W 2019 Optica 6 264Google Scholar

    [16]

    Huang H L, Luo Y H, Bai B, Deng Y H, Wang H, Zhao Q, Zhong H S, Nie Y Q, Jiang W H, Wang X L, Zhang J, Li L, Liu N L, Byrnes T, Dowling J P, Lu C Y, Pan J W 2019 Phys. Rev. A 100 012114Google Scholar

    [17]

    Huang H L, Bao W S, Guo C 2019 Phys. Rev. A 100 032305Google Scholar

    [18]

    Huang H L, Wang X L, Rohde P P, Luo Y H, Zhao Y W, Liu C, Li L, Liu N L, Lu C Y, Pan J W 2018 Optica 5 193Google Scholar

    [19]

    Wang X L, Luo Y H, Huang H L, Chen M C, Su Z E, Liu C, Chen C, Li W, Fang Y Q, Jiang X, Zhang J, Li L, Liu N L, Lu C Y, Pan J W 2018 Phys. Rev. Lett. 120 260502Google Scholar

    [20]

    Huang H L, Zhong H S, Li T, Li F G, Fu X Q, Zhang S, Wang X, Bao W S 2017 Sci. Rep. 7 15265Google Scholar

    [21]

    Huang H L, Bao W S, Li T, Li F G, Fu X Q, Zhang S, Zhang H L, Wang X 2017 Phys. Lett. A 381 2673Google Scholar

    [22]

    Wang H, He Y, Li Y H, Su Z E, Li B, Huang H L, Ding X, Chen M C, Liu C, Qin J, Li J P, He Y M, Schneider C, Kamp M, Peng C Z, Höfling S, Lu C Y, Pan J W 2017 Nat. Photonics 11 361Google Scholar

    [23]

    He Y, Ding X, Su Z E, Huang H L, Qin J, Wang C, Unsleber S, Chen C, Wang H, He Y M, Wang X L, Zhang W J, Chen S J, Schneider C, Kamp M, You L X, Wang Z, Höfling S, Lu C Y, Pan J W 2017 Phys. Rev. Lett. 118 190501Google Scholar

    [24]

    Wang X L, Chen L K, Li W, Huang H L, Liu C, Chen C, Luo Y H, Su Z E, Wu D, Li Z D, Lu H, Hu Y, Jiang X, Peng C Z, Li L, Liu N L, Chen Y A, Lu C Y, Pan J W 2016 Phys. Rev. Lett. 117 210502Google Scholar

    [25]

    Häffner H, Roos C F, Blatt R 2008 Phys. Rep. 469 155Google Scholar

    [26]

    Kane B E 1998 Nature 393 133Google Scholar

    [27]

    He Y, Gorman S K, Keith D, Kranz L, Keizer J G, Simmons M Y 2019 Nature 571 371Google Scholar

    [28]

    Bloch I 2008 Nature 453 1016Google Scholar

    [29]

    Arute F, Arya K, Babbush R, et al. 2019 Nature 574 505Google Scholar

    [30]

    Zhong H S, Wang H, Deng Y H, Chen M C, Peng L C, Luo Y H, Qin J, Wu D, Ding X, Hu Y, Hu P, Yang X Y, Zhang W J, Li H, Li Y, Jiang X, Gan L, Yang G, You L, Wang Z, Li L, Liu N L, Lu C Y, Pan J W 2020 Science 370 1460Google Scholar

    [31]

    Guo C, Zhao Y, Huang H L 2021 Phys. Rev. Lett. 126 070502Google Scholar

    [32]

    Guo C, Liu Y, Xiong M, Xue S, Fu X, Huang A, Qiang X, Xu P, Liu J, Zheng S, Huang H L, Deng M, Poletti D, Bao W S, Wu J 2019 Phys. Rev. Lett. 123 190501Google Scholar

    [33]

    Wu Y, Bao W S, Cao S, Chen F, Chen M C, Chen X, Chung T H, Deng H, Du Y, Fan D, Gong M, Guo C, Guo C, Guo S, Han L, Hong L, Huang H L, Huo Y H, Li L, Li N, Li S, Li Y, Liang F, Lin C, Lin J, Qian H, Qiao D, Rong H, Su H, Sun L, Wang L, Wang S, Wu D, Xu Y, Yan K, Yang W, Yang Y, Ye Y, Yin J, Ying C, Yu J, Zha C, Zhang C, Zhang H, Zhang K, Zhang Y, Zhao H, Zhao Y, Zhou L, Zhu Q, Lu C Y, Peng C Z, Zhu X, Pan J W 2021 arXiv2106.14734[quant-ph]

    [34]

    Liu Y, Wang D, Xue S, Huang A, Fu X, Qiang X, Xu P, Huang H L, Deng M, Guo C, Yang X, Wu J 2020 Phys. Rev. A 101 052316Google Scholar

    [35]

    Huang H L, Du Y, Gong M, Zhao Y, Wu Y, Wang C, Li S, Liang F, Lin J, Xu Y, Yang R, Liu T, Hsieh M H, Deng H, Rong H, Peng C Z, Lu C Y, Chen Y A, Tao D, Zhu X, Pan J W 2021 Phys. Rev. Appl. 16 024051

    [36]

    Liu J, Lim K H, Wood K L, Huang W, Guo C, Huang H L 2021 Sci. China-Phys. Mech. Astron. 64 290311Google Scholar

    [37]

    Huang H L, Zhao Q, Ma X, Liu C, Su Z E, Wang X L, Li L, Liu N L, Sanders B C, Lu C Y, Pan J W 2017 Phys. Rev. Lett. 119 050503Google Scholar

    [38]

    Huang H L, Bao W S, Li T, Li F G, Fu X Q, Zhang S, Zhang H L, Wang X 2017 Quantum Inf. Proc. 16 199Google Scholar

    [39]

    Huang H L, nad Tan Li Y W Z, Li F G, Du Y T, Fu X Q, Zhang S, Wang X, Bao W S 2017 Front. Phys. 12 120305Google Scholar

    [40]

    Abraham H, Akhalwaya I Y, Aleksandrowicz G, et al. 2019 Qiskit: An Open-source Framework for Quantum Computing

  • 图 1  两个算法随机读取多比特量子态的平均正确概率. 在左图中, 测量噪声$\eta$固定为0.05, 研究平均正确概率随测量噪声n的变化. 在右图中, 比特数n固定为3, 研究平均正确概率随测量噪声$\eta$的变化. 平均正确概率的计算方法为随机抽取1000个量子态计算对应的$P_1$$P_2$, 并取平均

    Figure 1.  Average probability of correctness of the two algorithms reading a n-qubit quantum state. In the left subgraph, the number of qubits is 3, and we investigate the dependence of average probability of correctness on the readout noise $\eta$. In the right subgraph, the readout noise $\eta=0.05$, and we investigate the dependence of average probability of correctness on the number of qubits. The values of average probability of correctness are calculated as the average of $P_1$ and $P_2$ on 1000 reading instances.

    图 2  两个算法在多种情况下的正确率比较. 其中实线是正确率, 色带是95%置信区间. 图例中, direct代表直接测量, our代表算法2

    Figure 2.  Correctness rates of two algorithms under multiple circumstances. In the graph, the lines represent the correctness rates while the bands represent the 95% confidence intervals. In the legend, “direct” represents the direct method, “our” represents Alg. 2

    Baidu
  • [1]

    Shor P W 1994 Proceedings 35th Annual Symposium Foundations Computer Science Santa Fe, New Mexico, USA, November 20–22, 1994 pp124–134

    [2]

    Grover L K 1996 Proceedings 28th Annual ACM Symposium Theory Computing Philadelphia, Pennsylvania, USA, May 22–24, 1996 pp212–219

    [3]

    Harrow A W, Hassidim A, Lloyd S 2009 Phys. Rev. Lett. 103 150502Google Scholar

    [4]

    Clarke J, Wilhelm F K 2008 Nature 453 1031Google Scholar

    [5]

    Huang H L, Narożniak M, Liang F, Zhao Y, Castellano A D, Gong M, Wu Y, Wang S, Lin J, Xu Y, Deng H, Rong H, Dowling J P, Peng C Z, Byrnes T, Zhu X, Pan J W 2021 Phys. Rev. Lett. 126 090502Google Scholar

    [6]

    Huang H L, Wu D, Fan D, Zhu X 2020 Sci. China Inf. Sci. 63 180501Google Scholar

    [7]

    Kjaergaard M, Schwartz M E, Braumjller J, Krantz P, Wang J I J, Gustavsson S, Oliver W D 2020 Annu. Rev. Condens. Matter Phys. 11 369Google Scholar

    [8]

    Krantz P, Kjaergaard M, Yan F, Orlando T P, Gustavsson S, Oliver W D 2019 Appl. Phys. Rev. 6 021318Google Scholar

    [9]

    Gu X, Kockum A F, Miranowicz A, Liu Y X, Nori F 2017 Phys. Rep. 718–719 1Google Scholar

    [10]

    Wendin G 2017 Rep. Prog. Phys. 80 106001Google Scholar

    [11]

    You J Q, Nori F 2005 Phys. Today 58 42Google Scholar

    [12]

    You J Q, Nori F 2011 Nature 474 589Google Scholar

    [13]

    Nation P D, Johansson J R, Blencowe M P, Nori F 2012 Rev. Mod. Phys. 84 1Google Scholar

    [14]

    O’Brien J L, Furusawa A, Vučković J 2009 Nat. Photonics 3 687Google Scholar

    [15]

    Liu C, Huang H L, Chen C, Wang B Y, Wang X L, Yang T, Li L, Liu N L, Dowling J P, Byrnes T, Lu C Y, Pan J W 2019 Optica 6 264Google Scholar

    [16]

    Huang H L, Luo Y H, Bai B, Deng Y H, Wang H, Zhao Q, Zhong H S, Nie Y Q, Jiang W H, Wang X L, Zhang J, Li L, Liu N L, Byrnes T, Dowling J P, Lu C Y, Pan J W 2019 Phys. Rev. A 100 012114Google Scholar

    [17]

    Huang H L, Bao W S, Guo C 2019 Phys. Rev. A 100 032305Google Scholar

    [18]

    Huang H L, Wang X L, Rohde P P, Luo Y H, Zhao Y W, Liu C, Li L, Liu N L, Lu C Y, Pan J W 2018 Optica 5 193Google Scholar

    [19]

    Wang X L, Luo Y H, Huang H L, Chen M C, Su Z E, Liu C, Chen C, Li W, Fang Y Q, Jiang X, Zhang J, Li L, Liu N L, Lu C Y, Pan J W 2018 Phys. Rev. Lett. 120 260502Google Scholar

    [20]

    Huang H L, Zhong H S, Li T, Li F G, Fu X Q, Zhang S, Wang X, Bao W S 2017 Sci. Rep. 7 15265Google Scholar

    [21]

    Huang H L, Bao W S, Li T, Li F G, Fu X Q, Zhang S, Zhang H L, Wang X 2017 Phys. Lett. A 381 2673Google Scholar

    [22]

    Wang H, He Y, Li Y H, Su Z E, Li B, Huang H L, Ding X, Chen M C, Liu C, Qin J, Li J P, He Y M, Schneider C, Kamp M, Peng C Z, Höfling S, Lu C Y, Pan J W 2017 Nat. Photonics 11 361Google Scholar

    [23]

    He Y, Ding X, Su Z E, Huang H L, Qin J, Wang C, Unsleber S, Chen C, Wang H, He Y M, Wang X L, Zhang W J, Chen S J, Schneider C, Kamp M, You L X, Wang Z, Höfling S, Lu C Y, Pan J W 2017 Phys. Rev. Lett. 118 190501Google Scholar

    [24]

    Wang X L, Chen L K, Li W, Huang H L, Liu C, Chen C, Luo Y H, Su Z E, Wu D, Li Z D, Lu H, Hu Y, Jiang X, Peng C Z, Li L, Liu N L, Chen Y A, Lu C Y, Pan J W 2016 Phys. Rev. Lett. 117 210502Google Scholar

    [25]

    Häffner H, Roos C F, Blatt R 2008 Phys. Rep. 469 155Google Scholar

    [26]

    Kane B E 1998 Nature 393 133Google Scholar

    [27]

    He Y, Gorman S K, Keith D, Kranz L, Keizer J G, Simmons M Y 2019 Nature 571 371Google Scholar

    [28]

    Bloch I 2008 Nature 453 1016Google Scholar

    [29]

    Arute F, Arya K, Babbush R, et al. 2019 Nature 574 505Google Scholar

    [30]

    Zhong H S, Wang H, Deng Y H, Chen M C, Peng L C, Luo Y H, Qin J, Wu D, Ding X, Hu Y, Hu P, Yang X Y, Zhang W J, Li H, Li Y, Jiang X, Gan L, Yang G, You L, Wang Z, Li L, Liu N L, Lu C Y, Pan J W 2020 Science 370 1460Google Scholar

    [31]

    Guo C, Zhao Y, Huang H L 2021 Phys. Rev. Lett. 126 070502Google Scholar

    [32]

    Guo C, Liu Y, Xiong M, Xue S, Fu X, Huang A, Qiang X, Xu P, Liu J, Zheng S, Huang H L, Deng M, Poletti D, Bao W S, Wu J 2019 Phys. Rev. Lett. 123 190501Google Scholar

    [33]

    Wu Y, Bao W S, Cao S, Chen F, Chen M C, Chen X, Chung T H, Deng H, Du Y, Fan D, Gong M, Guo C, Guo C, Guo S, Han L, Hong L, Huang H L, Huo Y H, Li L, Li N, Li S, Li Y, Liang F, Lin C, Lin J, Qian H, Qiao D, Rong H, Su H, Sun L, Wang L, Wang S, Wu D, Xu Y, Yan K, Yang W, Yang Y, Ye Y, Yin J, Ying C, Yu J, Zha C, Zhang C, Zhang H, Zhang K, Zhang Y, Zhao H, Zhao Y, Zhou L, Zhu Q, Lu C Y, Peng C Z, Zhu X, Pan J W 2021 arXiv2106.14734[quant-ph]

    [34]

    Liu Y, Wang D, Xue S, Huang A, Fu X, Qiang X, Xu P, Huang H L, Deng M, Guo C, Yang X, Wu J 2020 Phys. Rev. A 101 052316Google Scholar

    [35]

    Huang H L, Du Y, Gong M, Zhao Y, Wu Y, Wang C, Li S, Liang F, Lin J, Xu Y, Yang R, Liu T, Hsieh M H, Deng H, Rong H, Peng C Z, Lu C Y, Chen Y A, Tao D, Zhu X, Pan J W 2021 Phys. Rev. Appl. 16 024051

    [36]

    Liu J, Lim K H, Wood K L, Huang W, Guo C, Huang H L 2021 Sci. China-Phys. Mech. Astron. 64 290311Google Scholar

    [37]

    Huang H L, Zhao Q, Ma X, Liu C, Su Z E, Wang X L, Li L, Liu N L, Sanders B C, Lu C Y, Pan J W 2017 Phys. Rev. Lett. 119 050503Google Scholar

    [38]

    Huang H L, Bao W S, Li T, Li F G, Fu X Q, Zhang S, Zhang H L, Wang X 2017 Quantum Inf. Proc. 16 199Google Scholar

    [39]

    Huang H L, nad Tan Li Y W Z, Li F G, Du Y T, Fu X Q, Zhang S, Wang X, Bao W S 2017 Front. Phys. 12 120305Google Scholar

    [40]

    Abraham H, Akhalwaya I Y, Aleksandrowicz G, et al. 2019 Qiskit: An Open-source Framework for Quantum Computing

Metrics
  • Abstract views:  9486
  • PDF Downloads:  333
  • Cited By: 0
Publishing process
  • Received Date:  04 June 2021
  • Accepted Date:  23 July 2021
  • Available Online:  19 October 2021
  • Published Online:  05 November 2021
  • /

    返回文章
    返回
    Baidu
    map