Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Triangular-shaped waveform generation with variable symmetry based on dual-polarization modulation

Wang Chuang-Ye Ning Ti-Gang Li Jing Pei Li Zheng Jing-Jing Li Yu-Jian Ai Bo

Citation:

Triangular-shaped waveform generation with variable symmetry based on dual-polarization modulation

Wang Chuang-Ye, Ning Ti-Gang, Li Jing, Pei Li, Zheng Jing-Jing, Li Yu-Jian, Ai Bo
cstr: 32037.14.aps.70.20210751
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Photonic generation of triangular-shaped waveform with variable symmetry based on dual-polarization modulation is proposed and demonstrated. Based on the external modulation method, a dual-polarization modulator is used to modulate the radio frequency signal to generate the needed optical signal. By setting the modulation index of the modulator and phase shift of phase shifters appropriately, the optical intensity of generated signal can equal approximately the first three terms of the Fourier series expansion of the ideal triangular-shaped waveform, so triangular-shaped waveforms with different symmetry factors can be generated. Most of previous triangular waveform generation schemes generate symmetrical triangular waveform or sawtooth waveform (sawtooth waveform can be regarded as an asymmetrical triangular waveform), and the symmetry factor is not tunable. The tunable range of symmetry factor of triangular-shaped waveform generated by this scheme can reach 0%–100%, which will greatly expand the application range of triangular-shaped waveforms. The root-mean-square error (RMSE) is introduced to measure the similarity between the generated waveform and the theoretical waveform. It can be found that theoretically the triangular-shaped waveform with a symmetry factor in a range from 14% to 86% has a good similarity to the ideal waveform (RMSE < 0.044), and the RMSE of the generated waveform in the simulation is also very close to the theoretical RMSE. Experimentally, the 4GHz triangular-shaped waveforms with different values of symmetry factor (20%–80%) are obtained by using 4GHz radio frequency signal.
      Corresponding author: Li Jing, lijing@bjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61827817, 62005012) and the Natural Science foundation of Beijing, China (Grant No. 4192022).
    [1]

    Bhamber R S, Latkin A I, Boscolo S, Turitsyn S K 2008 34th European Conference on Optical Communication, September 21–25, 2008 p1

    [2]

    Cho S W, Rassau A, Gornisiewicz W 2007 6th International Conference on Polymers and Adhesives in Microelectronics and Photonics, January 16–18, 2007 p217

    [3]

    Xu S Z, Wang P, Dong Y G 2016 Sensors 16 576Google Scholar

    [4]

    Won Y S, Kim C H, Lee S G 2015 IEEE Sens. J. 15 7142Google Scholar

    [5]

    Verscheure N, Finot C 2011 Electron. Lett. 47 1194Google Scholar

    [6]

    Ye J, Yan L S, Pan W, Luo B, Zou X H, Yi A L, Yao S 2011 Opt. Lett. 36 1458Google Scholar

    [7]

    Jiang H Y, Yan L S, Sun Y F, Ye J, Pan W, Luo B, Zou X H 2013 Opt. Express 21 6488Google Scholar

    [8]

    Li W, Wang W Y, Sun W H, Wang W T, Liu J G, Zhu N H 2014 Opt. Lett. 39 4758Google Scholar

    [9]

    Dai B, Gao Z S, Wang X, Chen H W, Kataoka N, Wada N 2013 J. LightwaveTechnol. 31 145Google Scholar

    [10]

    Li J, Ning T G, Pei L, Zheng J J, Li Y Q, Yuan J, Wang Y Q, Zhang C, Chen H Y 2014 Chin. Opt. Lett. 12 120602Google Scholar

    [11]

    Gao Y S, Wen A J, Liu W Y, Zhang H X, Xiang S Y 2016 IEEE Photonics J. 8 7801609Google Scholar

    [12]

    Li W, Wang W T, Zhu N H 2014 IEEE Photonics J. 6 5500608Google Scholar

    [13]

    Liu X K, Pan W, Zou X H, Zheng D, Yan L S, Luo B, Lu B 2014 J. Lightwave Technol. 32 3797Google Scholar

    [14]

    Huang L, Chen D L, Wang P, Zhang T T, Xiang P, Zhang Y Y, Pu T, Chen X F 2015 IEEE Photonics Technol. Lett. 27 2500Google Scholar

    [15]

    Wang W Y, Li W, Sun W H, Wang W T, Liu J G, Zhu N H 2015 IEEE Photonics Technol. Lett. 27 522Google Scholar

    [16]

    Li Y Y, Wen A J, Zhang W, Wang Q, Li X R 2019 Opt. Commun. 445 231Google Scholar

    [17]

    He Y T, Jiang Y, Zi Y J, Bai G F, Tian J, Xia Y, Zhang X Y, Dong R Y, Luo H 2018 Opt. Express 26 7829Google Scholar

    [18]

    Wei C, Jiang Y, Luo H, Dong R Y, Tian J, Zi Y J, Liu H F, Wang R 2020 Opt. Express 28 8098Google Scholar

    [19]

    Xia Y, Jiang Y, Zi Y J, He Y T, Tian J, Zhang X Y, Luo H, Dong R Y 2018 Opt. Commun. 414 177Google Scholar

    [20]

    Bai G F, Hu L, Jiang Y, Tian J, Zi Y J, Wu T W, Huang F Q 2017 Opt. Commun. 396 134Google Scholar

    [21]

    Li J, Ning T G, Pei L, Zheng J J 2019 J. Mod. Opt. 66 1457Google Scholar

  • 图 1  不同对称因子对应的b1, b2, b3

    Figure 1.  Magnitude of b1, b2 and b3 versus symmetry factor δ.

    图 2  可变对称三角波形生成方案的原理示意图. CW laser, 连续波激光器; PC, 偏振控制器; RF source, 射频源; EPS, 电功分器; EA, 电放大器; PS, 电移相器; OPS, 光功分器; MZM, 单驱动马赫曾德尔调制器; PBC, 偏振合束器; 90°PR, 90°偏振旋转器; PD, 光电探测器

    Figure 2.  Schematic diagram of the proposed scheme. CW laser, continuous wave laser; PC, polarization controller; RF source, radio frequency source; EPS, electrical power splitter; EA, electrical amplifier; PS, phase shifter; OPS, optical power splitter; MZM, single-drive Mach-Zehnder Modulator; PBC, polarization beam combiner; 90° PR, 90° polarization rotator; PD, photodiode.

    图 3  仿真生成的对称因子为0%—100%的时域波形

    Figure 3.  Simulated generated temporal triangular-shaped waveforms with δ = 0%−100%.

    图 4  仿真生成的对称因子为20%的三角波形 (a) 时域波形; (b) 对应的电谱

    Figure 4.  Simulated generated triangular-shaped waveform with δ = 20%: (a) Temporal waveform; (b) corresponding electrical spectrum.

    图 5  对称因子为20%的三角波形的合成示意图

    Figure 5.  Synthesis schematic diagram of triangular-shaped waveform with δ = 20%.

    图 6  (a) 三阶近似波形、五阶近似波形和十阶近似波形的理论RMSE; (b) 仿真生成波形的RMSE

    Figure 6.  (a) Theoretical RMSE for third-order approximate waveform, fifth-order approximate waveform and tenth-order approximate waveform; (b) the RMSE of simulated generated waveforms.

    图 7  可变对称三角波形生成方案的实验平台. Dual-wavelength laser, 双波长激光器; Polarization controller, 偏振控制器; Signal generator, 信号发生器; Power splitter, 电功分器; Electrical delay line, 电延迟线; Electrical amplifier, 电放大器; 180° hybrid coupler, 180°电桥; DP-BPSK modulator, 双偏振BPSK调制器; Photodiode, 光电探测器; Oscilloscope, 示波器

    Figure 7.  Experimental platform for triangular-shaped waveform with variable symmetry generation scheme.

    图 8  实验生成的对称因子为20%, 30%, 40%, 50%, 60%, 70%和80%的三角波形

    Figure 8.  Generated triangular-shaped waveforms with δ = 20%, 30%, 40%, 50%, 60%, 70% and 80% in the experiment.

    图 9  实验生成的对称因子为20%的三角波形 (a) 时域波形; (b) 对应的电谱

    Figure 9.  Generated triangular-shaped waveform with δ = 20%: (a) Temporal waveform; (b) corresponding electrical spectrum.

    表 1  不同对称因子三角波形的生成条件

    Table 1.  Generated conditions for triangular-shaped waveforms with different symmetry factor.

    对称因子相移1相移2相移3调制系数1调制系数2
    δθ1θ2θ3m1m2
    0%0π/401.150.83
    10%0π/401.10.81
    20%0π/400.920.76
    30%0π/400.490.53
    40%π/2π/23π/20.610.41
    50%π/203π/20.760
    60%π/203π/20.610.41
    70%03π/400.490.53
    80%03π/400.920.76
    90%03π/401.10.81
    100%03π/401.150.83
    DownLoad: CSV
    Baidu
  • [1]

    Bhamber R S, Latkin A I, Boscolo S, Turitsyn S K 2008 34th European Conference on Optical Communication, September 21–25, 2008 p1

    [2]

    Cho S W, Rassau A, Gornisiewicz W 2007 6th International Conference on Polymers and Adhesives in Microelectronics and Photonics, January 16–18, 2007 p217

    [3]

    Xu S Z, Wang P, Dong Y G 2016 Sensors 16 576Google Scholar

    [4]

    Won Y S, Kim C H, Lee S G 2015 IEEE Sens. J. 15 7142Google Scholar

    [5]

    Verscheure N, Finot C 2011 Electron. Lett. 47 1194Google Scholar

    [6]

    Ye J, Yan L S, Pan W, Luo B, Zou X H, Yi A L, Yao S 2011 Opt. Lett. 36 1458Google Scholar

    [7]

    Jiang H Y, Yan L S, Sun Y F, Ye J, Pan W, Luo B, Zou X H 2013 Opt. Express 21 6488Google Scholar

    [8]

    Li W, Wang W Y, Sun W H, Wang W T, Liu J G, Zhu N H 2014 Opt. Lett. 39 4758Google Scholar

    [9]

    Dai B, Gao Z S, Wang X, Chen H W, Kataoka N, Wada N 2013 J. LightwaveTechnol. 31 145Google Scholar

    [10]

    Li J, Ning T G, Pei L, Zheng J J, Li Y Q, Yuan J, Wang Y Q, Zhang C, Chen H Y 2014 Chin. Opt. Lett. 12 120602Google Scholar

    [11]

    Gao Y S, Wen A J, Liu W Y, Zhang H X, Xiang S Y 2016 IEEE Photonics J. 8 7801609Google Scholar

    [12]

    Li W, Wang W T, Zhu N H 2014 IEEE Photonics J. 6 5500608Google Scholar

    [13]

    Liu X K, Pan W, Zou X H, Zheng D, Yan L S, Luo B, Lu B 2014 J. Lightwave Technol. 32 3797Google Scholar

    [14]

    Huang L, Chen D L, Wang P, Zhang T T, Xiang P, Zhang Y Y, Pu T, Chen X F 2015 IEEE Photonics Technol. Lett. 27 2500Google Scholar

    [15]

    Wang W Y, Li W, Sun W H, Wang W T, Liu J G, Zhu N H 2015 IEEE Photonics Technol. Lett. 27 522Google Scholar

    [16]

    Li Y Y, Wen A J, Zhang W, Wang Q, Li X R 2019 Opt. Commun. 445 231Google Scholar

    [17]

    He Y T, Jiang Y, Zi Y J, Bai G F, Tian J, Xia Y, Zhang X Y, Dong R Y, Luo H 2018 Opt. Express 26 7829Google Scholar

    [18]

    Wei C, Jiang Y, Luo H, Dong R Y, Tian J, Zi Y J, Liu H F, Wang R 2020 Opt. Express 28 8098Google Scholar

    [19]

    Xia Y, Jiang Y, Zi Y J, He Y T, Tian J, Zhang X Y, Luo H, Dong R Y 2018 Opt. Commun. 414 177Google Scholar

    [20]

    Bai G F, Hu L, Jiang Y, Tian J, Zi Y J, Wu T W, Huang F Q 2017 Opt. Commun. 396 134Google Scholar

    [21]

    Li J, Ning T G, Pei L, Zheng J J 2019 J. Mod. Opt. 66 1457Google Scholar

Metrics
  • Abstract views:  7259
  • PDF Downloads:  75
  • Cited By: 0
Publishing process
  • Received Date:  20 April 2021
  • Accepted Date:  16 June 2021
  • Available Online:  15 August 2021
  • Published Online:  20 November 2021
  • /

    返回文章
    返回
    Baidu
    map