Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of directional infrared irradiations on the temperature field in ICF cryotargets

Guo Fu-Cheng Li Cui Li Yan-Zhong

Citation:

Influence of directional infrared irradiations on the temperature field in ICF cryotargets

Guo Fu-Cheng, Li Cui, Li Yan-Zhong
cstr: 32037.14.aps.70.20210029
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • For an inertial-confinement-fusion cryogenic target, the fusion ice layer inside the capsule should have a uniformity more than 99% and an inner surface roughness less than 1 μm (root mean square) to avoid Rayleigh-Taylor instabilities. And this highly smooth ice layer required for ignition is generated at the presence of volumetric heat and affected by the thermal environment around the capsule. For the D2 fuel targets, the volumetrically heating can be supplied by exposing the ice layer to IR radiation. A major challenge of IR-layering is a spherically uniform IR illumination of the capsule, particularly for capsules held in cylindrical hohlraums in indirect-drive targets. In the present study, a numerical study is conducted on the thermal environment of D2 fuel capsule under directional infrared radiation. A 3D simulation model coupling the photonic and thermal fields has been established based on the Monte Carlo ray tracing method. The influence of infrared optical fibers’ layouts and source power intensity on temperature characteristics outside the capsule have been studied. The results indicate that at constant total power of optical fibers, the more optical fibers set up, the lower the average temperature of the outer surface decreases, and the more uniform the capsule outer surface temperature turns to be. The temperature uniformity of capsule outer surface deteriorates with the two or less optical fibers, but improves with the number greater than 2 in which case ΔTmax and ΔTw can decrease by 61.94% and 76.33% at most. A proper offset of optical fiber spots towards the hohlraum poles can improve the temperature uniformity of capsule outer surface, while the other two optical fiber spot offset schemes deteriorate the temperature uniformity. The results are of guiding significance for determining the optical fibers layout in experiment and further design option for cryogenic targets.
      Corresponding author: Li Cui, xjtucli@xjtu.edu.cn
    • Funds: Project supported by the National Special Program of China (Grant No. ***040301.2) and the Open Fundation of State Key Laboratory of Cryogenic Space Propellants (Grant No. SKLTSCP202012).
    [1]

    张歆, 章晓中, 谭新玉, 于奕, 万蔡华 2012 61 147303Google Scholar

    Zhang X, Zhang X Z, Tan X Y, Yu Y, Wan C H 2012 Acta Phys. Sin. 61 147303Google Scholar

    [2]

    杨旭东, 陈汉, 毕恩兵, 韩礼元 2015 64 038404Google Scholar

    Yang X D, Chen H, Bi E B, Han L Y 2015 Acta Phys. Sin. 64 038404Google Scholar

    [3]

    Horvath A, Rachlew E 2016 Ambio 45 38Google Scholar

    [4]

    Chen W M, Kim H, Yamaguchi H 2014 Energy Policy 74 31Google Scholar

    [5]

    张占文, 漆小波, 李波 2012 61 145204Google Scholar

    Zhang Z W, Qi X B, Li B 2012 Acta Phys. Sin. 61 145204Google Scholar

    [6]

    黄鑫, 彭述明, 周晓松, 余铭铭, 尹剑, 温成伟 2015 64 215201Google Scholar

    Huang X, Peng S M, Zhou X S, Yu M M, Yin J, Wen C W 2015 Acta Phys. Sin. 64 215201Google Scholar

    [7]

    Tang J, Xie Z Y, Du A, Ye J J, Zhang Z H, Shen J, Zhou B 2016 J. Fusion Energ. 35 357Google Scholar

    [8]

    Holmlid L 2014 J. Fusion Energ. 33 348Google Scholar

    [9]

    Lindl J D, Amendt P, Berger R L, Glendinning G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339Google Scholar

    [10]

    Baclet P, Bachelet F, Choux A, Fleury E, Jeannot L, Laffite S, Martin M, Moll G, Pascal G, Reneaume B, Theobald M 2006 Fusion Sci, Technol. 49 565Google Scholar

    [11]

    王凯, 谢瑞, 林伟, 刘元琼, 黎军, 漆小波, 唐永建, 雷海乐 2013 强激光与粒子束 25 3230Google Scholar

    Wang K, Xie R, Lin W, Liu Y Q, Li J, Qi X B, Tang Y J, Lei H L 2013 High Power Laser and Particle Beams 25 3230Google Scholar

    [12]

    Hurricane O A, Callahan D A, Casey D T, Celliers P M, Cerjan C, Dewald E L, Dittrich T R, Doppner T, Hinkel D E, Berzak H L F, Kline J L, Le P S, Ma T, Macphee A G, Milovich J L, Pak A, Park H S, Patel P K, Remington B A, Salmonson J D, Springer P T, Tommasini R 2014 Nature 506 343Google Scholar

    [13]

    Lan K, He X T, Liu J 2014 Phys. Plasmas 21 052704Google Scholar

    [14]

    Harding D R, Ulreich J, Wittman M D 2018 Fusion Sci. Technol. 73 11Google Scholar

    [15]

    李翠, 陈洵, 厉彦忠 2019 西安交通大学学报 53 7Google Scholar

    Li C, Chen X, LI Y Z 2019 Journal of Xi’an Jiaotong University 53 7Google Scholar

    [16]

    林伟, 王凯, 毕鹏 2012 强激光与粒子束 25 2343Google Scholar

    Lin W, Wang K, BI P 2012 High Power Laser and Particle Beams 25 2343Google Scholar

    [17]

    London R A, Kozioziemski B J, Marinak M M, Kerbel G D, Bittner D N 2006 Fusion Sci. Technol. 49 608Google Scholar

    [18]

    Moll G, Baclet P, Martin M 2006 Fusion Sci. Technol. 49 574Google Scholar

    [19]

    Moll G, Baclet P, Martin M 2007 Fusion Sci. Technol. 51 737Google Scholar

    [20]

    Kozioziemski B J, London R A, McEachern R L, Bittner D N 2017 Fusion Sci. Technol. 45 262

    [21]

    London R A, McEachern R L, Kozioziemski B J, Bittner D N 2017 Fusion Sci. Technol. 45 245

    [22]

    王凯, 林伟, 谢瑞, 刘元琼, 马坤全, 黎军, 唐永建, 雷海乐 2013 强激光与粒子束 25 4322Google Scholar

    Wang K, Lin W, Xie R, Liu Y Q, Ma K Q, Li J, Tang Y J, Lei H L 2013 High Power Laser and Particle Beams 25 4322Google Scholar

    [23]

    Haan S W, Lindl D J, Callahan D A, Clark D S, Salmonson J D, Hammel B A, Atherton L J, Cook R C, Edwards M J, Glenzer S, Hamza A V 2011 Phys. Plasmas 18 051001Google Scholar

    [24]

    陈鹏玮, 厉彦忠, 李翠, 代飞, 丁岚, 辛毅 2017 66 190702Google Scholar

    Chen P W, Li Y Z, Li C, Dai F, Ding L, Xin Y 2017 Acta Phys. Sin. 66 190702Google Scholar

    [25]

    辛毅, 厉彦忠, 丁岚, 李翠 2019 原子能科学技术 53 6931Google Scholar

    Xin Y, Li Y Z, Ding L, Li C 2019 Atomic Energy Science and Technology 53 6931Google Scholar

    [26]

    Hong Y, Tao C Y, Gao S S, Qi X B, Jiang B B, Xie J, Liang J X, Zhang H J, Li G, Wei S, Tong W C, Yuan G H, Zhang Y J, Li X J 2020 Nuclear Fusion 60 026010Google Scholar

  • 图 1  低温靶系统主要部件结构尺寸 (a)套筒结构尺寸; (b)靶丸结构尺寸

    Figure 1.  Schematic of cryogenic target system: (a) Hohlraum structure; (b) capsule structure

    图 2  网格无关性验证

    Figure 2.  Gird-independence validation result

    图 3  靶丸外表面温度云图

    Figure 3.  Temperature contour of capsule outside surface

    图 4  红外光纤布置示意图

    Figure 4.  Schematic of infrared(IR) optical fiber layout

    图 5  不同光纤数量下光纤布置形式

    Figure 5.  The layout of optical fiber corresponding to optical fiber numbers

    图 6  不同光纤数量下的靶丸外表面温度云图

    Figure 6.  Temperature contour of capsule outside surface corresponding to optical fiber numbers

    图 7  靶丸外表面特征线

    Figure 7.  Characteristic line of capsule outside surface

    图 8  靶丸外表面特征线温度分布 (a)靶丸外表面水平特征线温度分布曲线; (b)靶丸外表面竖直特征线温度分布曲线

    Figure 8.  Temperature distribution of characteristic line of capsule outside surface: (a)Horizontal characteristic line; (b) vertical characteristic line

    图 9  不同光纤数量下靶丸外表面最大温差、加权温差及平均温度变化

    Figure 9.  ΔTmax, ΔTw and $ \bar T$ variations of capsule outside surface responding to optical fiber numbers

    图 10  不同光源功率密度下靶丸表面温度云图 (a) 0 W·m–2; (b) 1 W·m–2; (c) 4 W·m–2; (d) 10 W·m–2

    Figure 10.  Temperature contours of capsule outside surface under different optical fiber power densities: (a) 0 W·m–2; (b) 1 W·m–2; (c) 4 W·m–2; (d) 10 W·m–2

    图 11  m = 1时靶丸外表面最大温差和加权温差随单根光源功率密度变化曲线

    Figure 11.  ΔTmax and ΔTw variations of capsule outside surface responding to optical fiber power densities with m = 1

    图 12  靶丸外表面最大温差和加权温差随单根光源功率密度变化曲线 (a) m = 2; (b) m = 4; (c) m = 6; (d) m = 8

    Figure 12.  ΔTmax and ΔTuni variations of capsule outside surface responding to optical fiber power densities: (a) m = 2; (b) m = 4; (c) m = 6; (d) m = 8

    图 13  不同光纤数量下, 靶丸外表面最大温差极小值和加权温差的极小值及其对应的光源功率密度的变化曲线 (a)最大温差极小值; (b)加权温差的极小值

    Figure 13.  Tmax)min and (ΔTw)min variations of capsule outside surface responding to optical fiber numbers: (a) (ΔTmax)min; (b) (ΔTw)min

    图 14  3种红外光斑偏移方式

    Figure 14.  Schematic of 3 kinds of IR spots offsets

    图 15  3种光纤光斑偏移方式下的靶丸外表面温度云图 (a)方式1; (b)方式2; (c)方式3

    Figure 15.  Temperature contour of capsule outer surface corresponding to 3 kinds of IR spots offsets: (a) Mode1; (b) mode2; (c) mode3

    图 16  3种方案下靶丸外表面最大温差、加权温差和平均温度随南半腔光纤光斑偏移距离变化曲线 (a)方式1; (b)方式2; (c)方式3

    Figure 16.  ΔTmax, ΔTuni and $ \bar T$ variations with migration distance of southern half hohlraum IR spots corresponding to 3 kinds of IR spots offsets: (a) Mode1; (b) mode2; (c) mode3.

    表 1  不同材料在18 K环境下的物性参数

    Table 1.  Physical properties of different materials at 18 K

    材料密度ρ/ kg·m–3热容cp/ J·kg–1·K–1导热系数λ/ W·m–1·K–1动力粘度μ/ kg·m–1·s–1
    27108.3727
    1932014.661173.44
    靶壳110057.490.057
    He@1 kPa0.35292.60.0211.31 × 10–6
    气态D20.0255193.70.0243.42 × 10–6
    固态D226050000.29
    (注: 本文不考虑气体对定向红外的影响, 因此氦气和氘气的吸收系数和散射系数均为0)
    DownLoad: CSV

    表 2  不同光纤数量下的每根光纤出射功率密度

    Table 2.  The power density of each optical fiber corresponding to optical fiber numbers

    m12468
    单根功率密度/(W·m–2)4.002.001.000.670.50
    DownLoad: CSV
    Baidu
  • [1]

    张歆, 章晓中, 谭新玉, 于奕, 万蔡华 2012 61 147303Google Scholar

    Zhang X, Zhang X Z, Tan X Y, Yu Y, Wan C H 2012 Acta Phys. Sin. 61 147303Google Scholar

    [2]

    杨旭东, 陈汉, 毕恩兵, 韩礼元 2015 64 038404Google Scholar

    Yang X D, Chen H, Bi E B, Han L Y 2015 Acta Phys. Sin. 64 038404Google Scholar

    [3]

    Horvath A, Rachlew E 2016 Ambio 45 38Google Scholar

    [4]

    Chen W M, Kim H, Yamaguchi H 2014 Energy Policy 74 31Google Scholar

    [5]

    张占文, 漆小波, 李波 2012 61 145204Google Scholar

    Zhang Z W, Qi X B, Li B 2012 Acta Phys. Sin. 61 145204Google Scholar

    [6]

    黄鑫, 彭述明, 周晓松, 余铭铭, 尹剑, 温成伟 2015 64 215201Google Scholar

    Huang X, Peng S M, Zhou X S, Yu M M, Yin J, Wen C W 2015 Acta Phys. Sin. 64 215201Google Scholar

    [7]

    Tang J, Xie Z Y, Du A, Ye J J, Zhang Z H, Shen J, Zhou B 2016 J. Fusion Energ. 35 357Google Scholar

    [8]

    Holmlid L 2014 J. Fusion Energ. 33 348Google Scholar

    [9]

    Lindl J D, Amendt P, Berger R L, Glendinning G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339Google Scholar

    [10]

    Baclet P, Bachelet F, Choux A, Fleury E, Jeannot L, Laffite S, Martin M, Moll G, Pascal G, Reneaume B, Theobald M 2006 Fusion Sci, Technol. 49 565Google Scholar

    [11]

    王凯, 谢瑞, 林伟, 刘元琼, 黎军, 漆小波, 唐永建, 雷海乐 2013 强激光与粒子束 25 3230Google Scholar

    Wang K, Xie R, Lin W, Liu Y Q, Li J, Qi X B, Tang Y J, Lei H L 2013 High Power Laser and Particle Beams 25 3230Google Scholar

    [12]

    Hurricane O A, Callahan D A, Casey D T, Celliers P M, Cerjan C, Dewald E L, Dittrich T R, Doppner T, Hinkel D E, Berzak H L F, Kline J L, Le P S, Ma T, Macphee A G, Milovich J L, Pak A, Park H S, Patel P K, Remington B A, Salmonson J D, Springer P T, Tommasini R 2014 Nature 506 343Google Scholar

    [13]

    Lan K, He X T, Liu J 2014 Phys. Plasmas 21 052704Google Scholar

    [14]

    Harding D R, Ulreich J, Wittman M D 2018 Fusion Sci. Technol. 73 11Google Scholar

    [15]

    李翠, 陈洵, 厉彦忠 2019 西安交通大学学报 53 7Google Scholar

    Li C, Chen X, LI Y Z 2019 Journal of Xi’an Jiaotong University 53 7Google Scholar

    [16]

    林伟, 王凯, 毕鹏 2012 强激光与粒子束 25 2343Google Scholar

    Lin W, Wang K, BI P 2012 High Power Laser and Particle Beams 25 2343Google Scholar

    [17]

    London R A, Kozioziemski B J, Marinak M M, Kerbel G D, Bittner D N 2006 Fusion Sci. Technol. 49 608Google Scholar

    [18]

    Moll G, Baclet P, Martin M 2006 Fusion Sci. Technol. 49 574Google Scholar

    [19]

    Moll G, Baclet P, Martin M 2007 Fusion Sci. Technol. 51 737Google Scholar

    [20]

    Kozioziemski B J, London R A, McEachern R L, Bittner D N 2017 Fusion Sci. Technol. 45 262

    [21]

    London R A, McEachern R L, Kozioziemski B J, Bittner D N 2017 Fusion Sci. Technol. 45 245

    [22]

    王凯, 林伟, 谢瑞, 刘元琼, 马坤全, 黎军, 唐永建, 雷海乐 2013 强激光与粒子束 25 4322Google Scholar

    Wang K, Lin W, Xie R, Liu Y Q, Ma K Q, Li J, Tang Y J, Lei H L 2013 High Power Laser and Particle Beams 25 4322Google Scholar

    [23]

    Haan S W, Lindl D J, Callahan D A, Clark D S, Salmonson J D, Hammel B A, Atherton L J, Cook R C, Edwards M J, Glenzer S, Hamza A V 2011 Phys. Plasmas 18 051001Google Scholar

    [24]

    陈鹏玮, 厉彦忠, 李翠, 代飞, 丁岚, 辛毅 2017 66 190702Google Scholar

    Chen P W, Li Y Z, Li C, Dai F, Ding L, Xin Y 2017 Acta Phys. Sin. 66 190702Google Scholar

    [25]

    辛毅, 厉彦忠, 丁岚, 李翠 2019 原子能科学技术 53 6931Google Scholar

    Xin Y, Li Y Z, Ding L, Li C 2019 Atomic Energy Science and Technology 53 6931Google Scholar

    [26]

    Hong Y, Tao C Y, Gao S S, Qi X B, Jiang B B, Xie J, Liang J X, Zhang H J, Li G, Wei S, Tong W C, Yuan G H, Zhang Y J, Li X J 2020 Nuclear Fusion 60 026010Google Scholar

Metrics
  • Abstract views:  6679
  • PDF Downloads:  62
  • Cited By: 0
Publishing process
  • Received Date:  06 January 2021
  • Accepted Date:  07 April 2021
  • Available Online:  07 June 2021
  • Published Online:  20 August 2021
  • /

    返回文章
    返回
    Baidu
    map