Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Simulation method of urban evacuation based on mesoscopic cellular automata

Lü Wei Wang Jing-Hui Fang Zhi-Ming Mao Dun

Citation:

Simulation method of urban evacuation based on mesoscopic cellular automata

Lü Wei, Wang Jing-Hui, Fang Zhi-Ming, Mao Dun
cstr: 32037.14.aps.70.20210018
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • In the traditional cellular automata evacuation model, the space is divided into fine grids at a micro level, which is mainly used in a two-dimensional plane case. The evacuation space is mostly a small-scale architectural space or local area. Therefore, it is difficult to simulate a wide range of evacuation scenario, and there are less researches of the cellular automata model for a wide range of evacuation. Therefore, this article combines the movement characteristics and status of the pedestrian flow to establish a mesoscopic cellular automata model of evacuation applied to larger evacuation scenarios. This model uses road cell division instead of planar grid cell division, which augments the area of a single cell physically, increases the number of people occupied by a single cell, and expresses the number of people in each cell in the form of state variables. By changing personnel density and personnel speed, and by introducing “source loading” cell loading to simulate the evacuation of people in the scene, the behavior of pedestrians evacuating from the building to the road in the actual evacuation process can be simulated. The state transition equation simulates the movement of people in the evacuation process. When the number of people in the cell is larger, the density of people in the cell is higher, and their walking speed also decreases, which reflects the distribution and movement characteristics of pedestrian flow. This paper uses this model to divide the evacuation area of the college campus, and divides the entire campus into four evacuation areas. The evacuees in each area are evacuated corresponding to the corresponding exit, by planning the evacuation path, pedestrians walking from the “source loading” cell to the exit for evacuation. Through simulation, it is possible to analyze the macro-evacuation situation in the scene and observe the status change of a single cell. There are observed a high density of people in local road sections during campus evacuation, and the problem about the distribution of people on campus problems such as unevenness of pedestrian distribution and long evacuation schedules in certain places. Through the simulation of this model, possible problems in the actual evacuation process are found, and the improvement guidance and opinions are presented correspondingly.
      Corresponding author: Fang Zhi-Ming, zhmfang2015@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52072286), the China Postdoctoral Science Foundation (Grant No. 2018M632937), and the Fundamental Research Funds for the Central Universities (Grant Nos. 2019IVA075, 2019III053GX)
    [1]

    Miyagawa D, Ichinose G 2020 Physica A 549 124376Google Scholar

    [2]

    Ji J W, Lu L G, Jin Z H, Wei S P, Ni L 2018 Physica A 509 1034Google Scholar

    [3]

    Maniccam S 2003 Physica A 321 653Google Scholar

    [4]

    Leng B, Wang J Y, Zhao W Y, Xiong Z 2014 Physica A 402 119Google Scholar

    [5]

    Jooyoung K, Chiwon A, Seungjae L 2018 Physica A 510 507Google Scholar

    [6]

    Hanisch A, Tolujew J, Richter K 2003 Proc. Winter Simul. Conf. 2 1635

    [7]

    Crociani L, Lämmel G, Park H J, Vizzari G 2017 Transportation Research Board. Annual Meeting of the Transportation Research Board Washington, D.C., USA, Jan, 2017 p1

    [8]

    Lämmel G, Flötteröd G 2015 Proc. Comput. Sci 52 950Google Scholar

    [9]

    Kaji M, Inohara T 2017 Physica A 467 85Google Scholar

    [10]

    Shi M, Lee E W M, Ma Y 2018 Physica A 497 198Google Scholar

    [11]

    胡俊, 游磊 2014 63 080507Google Scholar

    Hu J, You L 2014 Acta Phys. Sin. 63 080507Google Scholar

    [12]

    Hu J, You L, Wei J, Gu M S, Liang Y 2014 Phys. Lett. A 378 1913Google Scholar

    [13]

    张磊, 岳昊, 李梅, 王帅, 米雪玉 2015 64 060505

    Zhang L, Yue H, Li M, Wang S, Mi X Y 2015 Acta Phys. Sin. 64 060505

    [14]

    任刚, 陆丽丽, 王炜 2012 61 144501Google Scholar

    Ren G, Lu L L, Wang W 2012 Acta Phys. Sin. 61 144501Google Scholar

    [15]

    胥旋, 史聪灵, 李建, 车洪磊 2018 中国安全生产科学技术 14 20

    Xu X, Shi C L, Li J, Che H L 2018 J. Saf. Sci. Technol. 14 20

    [16]

    金泽人, 阮欣, 李越 2018 同济大学学报(自然科学版) 46 1026Google Scholar

    Jin Z R, Ruan X, Li Y 2018 J. Tongji Univ. (Nat. Sci.) 46 1026Google Scholar

    [17]

    陆卓谟, 秦文虎 2011 东南大学学报(自然科学版) 41 1295Google Scholar

    Lu Z M, Qin W H 2011 J. Southeast Univ. (Nat. Sci. Ed.) 41 1295Google Scholar

    [18]

    张维, 郑小平, 程礼盛 2013 电子科技大学学报(社科版) 15 26

    Zhang W, Zheng X P, Cheng L S 2013 J. Univ. Electron. Sci. Technol. Chin. (Social Sci. Ed.) 15 26

    [19]

    Cao S C, Song W G, Lü W, Fang Z M 2015 Physica A 436 45Google Scholar

    [20]

    陈雍容 2012 博士学位论文 (武汉: 华中科技大学)

    Chen Y R 2012 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese)

    [21]

    杨兆升, 高学英, 孙迪 2011 交通运输工程学报 11 114Google Scholar

    Yang Z S, Gao X Y, Sun D 2011 J. Traff. Transp. Eng. 11 114Google Scholar

    [22]

    Muramatsu M, Irie T, Nagatani T 1999 Physica A 267 487Google Scholar

    [23]

    Burstedde C, Klauck K, Schadschneider A, Zittartz J 2001 Physica A 295 507Google Scholar

    [24]

    于彦飞 2008 博士学位论文 (合肥: 中国科学技术大学)

    Yu Y F 2008 Ph. D. Disseration (Hefei: University of Science and Technology of China) (in Chinese)

    [25]

    Xu X, Song W G, Zheng H Y 2008 Physica A 387 5567Google Scholar

    [26]

    Ma J, Song W G, Zhang J, Lo S M, Liao G X 2010 Physica A 389 2101Google Scholar

  • 图 1  场域模型中的运动过程示意图

    Figure 1.  Sketch map of the movement process in FF model.

    图 2  平面网格划分向道路元胞切分转变示意图

    Figure 2.  Change from plane mesh to road cell segmentation.

    图 3  疏散道路元胞间宏观状态量更新示意图

    Figure 3.  The update of macro-state variable between road cells.

    图 4  疏散道路元胞间宏观状态量更新规则示意图 (a) 无加载源; (b) 有加载源

    Figure 4.  The update rule of macro-state variable between the evacuation road cells: (a) Without load source; (b) with load source.

    图 5  研究区域的空间范围及边界

    Figure 5.  The spatial scope and boundary of the study area.

    图 6  路网的元胞切分示意图

    Figure 6.  The road cell segmentation of the road network.

    图 7  各出口覆盖疏散道路范围示意图

    Figure 7.  Evacuation range of the roads covered by each exit.

    图 8  “源加载”元胞加载概率密度分布图

    Figure 8.  Probability density distribution figure of “source loading”cell.

    图 9  各出口及总疏散人数随时间变化关系

    Figure 9.  The relationship between the exits and the total number of evacuees varies with time.

    图 10  各出口及总疏散剩余人数随时间变化关系

    Figure 10.  The total number of remaining evacuees at each exit varies with time.

    图 11  “观测”元胞的位置分布

    Figure 11.  The location distribution of “observed”cellular

    图 12  各“观测”元胞人数随时间的变化

    Figure 12.  Changes in the number of “observed” cells over time.

    图 13  各“观测”元胞速度随时间的变化情况

    Figure 13.  Variations of cell velocity with time in each observed cell.

    图 14  空间人员数量分布图 (a) t = 100 s; (b) t = 200 s; (c) t = 300 s; (d) t = 400 s; (e) t = 500 s; (f) t = 600 s

    Figure 14.  Spatial staffing distributions: (a) t = 100 s; (b) t = 200 s; (c) t = 300 s; (d) t = 400 s; (e) t = 500 s; (f) t = 600 s.

    表 1  区域道路元胞编码统计信息

    Table 1.  Statistical information of regional road cellular coding.

    道路
    编号
    长/m宽/m元胞
    数量
    “源加载”元胞“出口”元胞
    12801228Cell1,8Cell1,1
    2290629Cell2,9,
    Cell2,29
    3230623Cell3,23
    4290629Cell4,9,
    Cell4,17
    5200620Cell5,9Cell5,1
    69069
    76867
    8250625
    9180618Cell9,5,
    Cell9,13
    10795680Cell10,59,
    Cell10,80
    119069Cell11,9
    12148615
    13530653Cell13,21
    147067
    15326633Cell15,22Cell15,33
    DownLoad: CSV

    表 2  模型参数

    Table 2.  Model parameters.

    参数含义
    l道路元胞长度10 m
    w道路元胞宽度6 m
    vf自由疏散速度1.5 m/s
    $\Delta t$计算时间间隔1 s
    ρm拥塞临界密度5 per/m2
    DownLoad: CSV

    表 3  各“源加载”元胞加载人数

    Table 3.  The number of pedestrians loaded by each ‘source loading’ cell.

    “源加载”
    元胞
    加载总
    人数/人
    “源加载”
    元胞
    加载总
    人数/人
    Cell1, 8500 Cell2, 9500
    Cell2, 29500 Cell4, 9700
    Cell4, 17500 Cell5, 9900
    Cell9, 5800 Cell9, 13800
    Cell10, 59600 Cell10, 80600
    Cell11, 9600 Cell13, 21700
    Cell15, 22500
    DownLoad: CSV

    表 4  各出口疏散人数

    Table 4.  Evacuation number at each exit.

    出口疏散总人数/人
    出口11600
    出口21700
    出口33200
    出口41700
    总计8200
    DownLoad: CSV
    Baidu
  • [1]

    Miyagawa D, Ichinose G 2020 Physica A 549 124376Google Scholar

    [2]

    Ji J W, Lu L G, Jin Z H, Wei S P, Ni L 2018 Physica A 509 1034Google Scholar

    [3]

    Maniccam S 2003 Physica A 321 653Google Scholar

    [4]

    Leng B, Wang J Y, Zhao W Y, Xiong Z 2014 Physica A 402 119Google Scholar

    [5]

    Jooyoung K, Chiwon A, Seungjae L 2018 Physica A 510 507Google Scholar

    [6]

    Hanisch A, Tolujew J, Richter K 2003 Proc. Winter Simul. Conf. 2 1635

    [7]

    Crociani L, Lämmel G, Park H J, Vizzari G 2017 Transportation Research Board. Annual Meeting of the Transportation Research Board Washington, D.C., USA, Jan, 2017 p1

    [8]

    Lämmel G, Flötteröd G 2015 Proc. Comput. Sci 52 950Google Scholar

    [9]

    Kaji M, Inohara T 2017 Physica A 467 85Google Scholar

    [10]

    Shi M, Lee E W M, Ma Y 2018 Physica A 497 198Google Scholar

    [11]

    胡俊, 游磊 2014 63 080507Google Scholar

    Hu J, You L 2014 Acta Phys. Sin. 63 080507Google Scholar

    [12]

    Hu J, You L, Wei J, Gu M S, Liang Y 2014 Phys. Lett. A 378 1913Google Scholar

    [13]

    张磊, 岳昊, 李梅, 王帅, 米雪玉 2015 64 060505

    Zhang L, Yue H, Li M, Wang S, Mi X Y 2015 Acta Phys. Sin. 64 060505

    [14]

    任刚, 陆丽丽, 王炜 2012 61 144501Google Scholar

    Ren G, Lu L L, Wang W 2012 Acta Phys. Sin. 61 144501Google Scholar

    [15]

    胥旋, 史聪灵, 李建, 车洪磊 2018 中国安全生产科学技术 14 20

    Xu X, Shi C L, Li J, Che H L 2018 J. Saf. Sci. Technol. 14 20

    [16]

    金泽人, 阮欣, 李越 2018 同济大学学报(自然科学版) 46 1026Google Scholar

    Jin Z R, Ruan X, Li Y 2018 J. Tongji Univ. (Nat. Sci.) 46 1026Google Scholar

    [17]

    陆卓谟, 秦文虎 2011 东南大学学报(自然科学版) 41 1295Google Scholar

    Lu Z M, Qin W H 2011 J. Southeast Univ. (Nat. Sci. Ed.) 41 1295Google Scholar

    [18]

    张维, 郑小平, 程礼盛 2013 电子科技大学学报(社科版) 15 26

    Zhang W, Zheng X P, Cheng L S 2013 J. Univ. Electron. Sci. Technol. Chin. (Social Sci. Ed.) 15 26

    [19]

    Cao S C, Song W G, Lü W, Fang Z M 2015 Physica A 436 45Google Scholar

    [20]

    陈雍容 2012 博士学位论文 (武汉: 华中科技大学)

    Chen Y R 2012 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese)

    [21]

    杨兆升, 高学英, 孙迪 2011 交通运输工程学报 11 114Google Scholar

    Yang Z S, Gao X Y, Sun D 2011 J. Traff. Transp. Eng. 11 114Google Scholar

    [22]

    Muramatsu M, Irie T, Nagatani T 1999 Physica A 267 487Google Scholar

    [23]

    Burstedde C, Klauck K, Schadschneider A, Zittartz J 2001 Physica A 295 507Google Scholar

    [24]

    于彦飞 2008 博士学位论文 (合肥: 中国科学技术大学)

    Yu Y F 2008 Ph. D. Disseration (Hefei: University of Science and Technology of China) (in Chinese)

    [25]

    Xu X, Song W G, Zheng H Y 2008 Physica A 387 5567Google Scholar

    [26]

    Ma J, Song W G, Zhang J, Lo S M, Liao G X 2010 Physica A 389 2101Google Scholar

Metrics
  • Abstract views:  7621
  • PDF Downloads:  139
  • Cited By: 0
Publishing process
  • Received Date:  04 January 2021
  • Accepted Date:  19 February 2021
  • Available Online:  16 May 2021
  • Published Online:  20 May 2021
  • /

    返回文章
    返回
    Baidu
    map