Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Viscoelastic relaxation time of the monoatomic Lennard-Jones system

Wang Yang Zhao Ling-Ling

Citation:

Viscoelastic relaxation time of the monoatomic Lennard-Jones system

Wang Yang, Zhao Ling-Ling
cstr: 32037.14.aps.69.20200138
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Viscoelastic relaxation time is an important concept to characterize the viscoelastic response of materials, which is directly related to the interactions among the microscopic atoms of materials. Few studies have focused on the methods of characterizing viscoelastic relaxation time. To investigate how to represent viscoelastic relaxation time effectively, the viscoelastic relaxation times of the monoatomic Lennard-Jones system on 22 conditions in a range of $ T^{ *} $ = 0.85–5, ρ* = 0.85–1, ε = 0.97–1, and σ = 0.8–1.3 are discussed from a microscopic perspective by the equilibrium molecular dynamics methods. Static viscoelasticity (viscosity η*, high-frequency shear modulus $ G_{\infty}^* $) is calculated by the Green-Kubo formula, and the Fourier transform is applied to the calculation of dynamic viscoelasticity (storage modulus $ G'^* $ and loss modulus $ G''^* $). On this basis, the viscoelastic characteristic relaxation time ($ \tau _{{\rm{MD}}}^*$), Maxwell relaxation time ($ \tau _{{\rm{Maxwell}}}^*$) and the lifetime of the state of local atomic connectivity ($ \tau _{{\rm{LC}}}^*$) are calculated. The viscoelastic characteristic relaxation time $ \tau _{{\rm{MD}}}^*$, defined when the two responses crossover, is the key measure of the period of such a stimulus when the storage modulus (elasticity) equals the loss modulus (viscosity). Maxwell relaxation time $ \tau _{{\rm{Maxwell}}}^* = {\eta ^*}/G_\infty ^*$, where η* is the static viscosity under infinitely low stimulus frequency (i.e., zero shear rate), $ G_{\infty}^* $ is the instantaneous shear modulus under infinitely high stimulus frequency, and $ \tau _{{\rm{LC}}}^*$ is the time it takes for an atom to lose or gain one nearest neighbor. The result is observed that $ \tau _{{\rm{LC}}}^*$ is closer to $ \tau _{{\rm{MD}}}^*$ than $ \tau _{{\rm{Maxwell}}}^*$. But the calculation of $ \tau _{{\rm{LC}}}^*$ needs to take into count the trajectories of all atoms in a certain time range, which takes a lot of time and computing resources. Finally, in order to characterize viscoelastic relaxation time more easily, Kramers’ rate theory is used to describe the dissociation and association of atoms, according to the radial distribution functions. And a method of predicting the viscoelasticity of the monoatomic Lennard-Jones system is proposed and established. The comparison of all the viscoelastic relaxation times obtained above shows that $ \tau _{{\rm{Maxwell}}}^*$ is quite different from $ \tau _{{\rm{MD}}}^*$ at low temperature in the monoatomic Lennard-Jones system. Compared with $ \tau _{{\rm{Maxwell}}}^*$, $ \tau _{{\rm{LC}}}^*$ is close to $ \tau _{{\rm{MD}}}^*$. But the calculation of $ \tau _{{\rm{LC}}}^*$ requires a lot of time and computing resources. Most importantly, the relaxation time calculated by our proposed method is closer to $ \tau _{{\rm{MD}}}^*$. The method of predicting the viscoelastic relaxation time of the monoatomic Lennard-Jones system is accurate and reliable, which provides a new idea for studying the viscoelastic relaxation time of materials.
      Corresponding author: Zhao Ling-Ling, zhao_lingling@seu.edu.cn
    [1]

    何平笙, 杨海洋, 朱平平 2004 化学通报 9 705Google Scholar

    He P S, Yang H Y, Zhu P P 2004 Chem. Bull. 9 705Google Scholar

    [2]

    金日光, 华幼卿 2007 高分子物理 (北京: 化学工业出版社) 第123页

    Jin R G, Hua Y Q 2007 Polymer Physics (Beijing: Chemical Industry Press) p123 (in Chinese)

    [3]

    Winter H H 1987 Polym. Eng. Sci. 27 1698Google Scholar

    [4]

    Sunthar P 2010 Rheology of Complex Fluids (New York: Springer-Verlag) pp171−191

    [5]

    Agrawal V, Holzworth K, Nantasetphong W, Amirkhizi V A, Oswald J, Nemat-Nasser 2016 J. Polym. Sci., Part B: Polym. Phys. 54 797Google Scholar

    [6]

    Hattkamp R, Daivids P J, Todd B D 2013 Phys. Rev. E 87 032155Google Scholar

    [7]

    Green M S 1954 J. Chem. Phys. 22 398Google Scholar

    [8]

    Kudo R, Toda M, Hashitsume N 2008 Statistical Physics II (Berlin: Springer-Verlag) pp109−145

    [9]

    Guillaud E, Merabia S, De Ligny D, Joly L 2017 Phys. Chem. Chem. Phys. 19 2124Google Scholar

    [10]

    Iwashita T, Egami T 2012 Phys. Rev. Lett. 108 196001Google Scholar

    [11]

    Iwashita T, Nicholson D M, Egami T 2013 Phys. Rev. Lett. 110 205504Google Scholar

    [12]

    Ashwin J, Sen A 2015 Phys. Rev. Lett. 114 055002Google Scholar

    [13]

    Maxwell J C 1867 Philos. Trans. R. Soc. A 157 49Google Scholar

    [14]

    陈艳 2006 硕士学位论文 (兰州: 西北师范大学)

    Chen Y 2006 M. S. Thesis (Lanzhou: Northwest Normal University) (in Chines)

    [15]

    Meier K, Laesecke A, Kabelac S 2004 J. Chem. Phys. 121 3671Google Scholar

    [16]

    Plimption S 1995 J. Comput. Phys. 117 1Google Scholar

    [17]

    Verlet L 1967 Phys. Rev. 159 98Google Scholar

    [18]

    Takahashi K, Yasuoka K, Narumi T 2007 J. Chem. Phys. 127 044107Google Scholar

    [19]

    Frenkel D, Smit B 2002 Understanding Molecular Simulation, Second Edition: From Algorithms to Applications (New York: Academic Press) p589

    [20]

    Frantz Dale B, Plimpton S J, Shephard M S 2010 Eng. Comput. 26 205Google Scholar

    [21]

    Boon J P, Yip S, Percus J K 1980 Molecular Hydrodynamics (New York: Dover Publications) p285

    [22]

    Hattemer G D, Arya G 2015 Macromol. 48 1240Google Scholar

    [23]

    Barnes S C, Lawless B M, Shepherd D E T, Espino D M, Bicknell G R, Bryan R T 2016 J. Mech. Behav. Biomed. 61 250Google Scholar

    [24]

    Heyes D M, Dini D, Brańka A C 2015 Phys. Status Solidi B 252 1514Google Scholar

    [25]

    Abidine Y, Laurent V M, Michel R 2015 Eur. Phys. J. Plus 130 202Google Scholar

    [26]

    Michalet, Xavier 2010 Phys. Rev. E 82 041914Google Scholar

    [27]

    Galliéro, Guillaume, Boned C, Baylaucq A 2005 Ind. Eng. Chem. Res. 44 6963Google Scholar

    [28]

    Morsali A, Goharshadi E K, Mansoori G A, Abbaspour M 2005 Chem. Phys. 310 11Google Scholar

    [29]

    Peter Hänggi, Talkner P, Borkovec M 1990 Rev. Mod. Phys. 62 251Google Scholar

  • 图 1  L-J体计算系统

    Figure 1.  L-J fluid simulation system.

    图 2  不同温度下L-J体的黏度验证

    Figure 2.  Verification of viscosity of L-J fluid at different temperatures.

    图 3  L-J体的径向分布函数验证 (a) ${\rho }^{*}=1,\; {T}^{*}=0.9$; (b) ${\rho }^{*}=1, \;{T}^{*}=4.0$

    Figure 3.  Verification of the radial distribution function of L-J fluid: (a) ${\rho }^{*}=1, \;{T}^{*}=0.9$; (b) ${\rho }^{*}=1, \;{T}^{*}=4.0$.

    图 4  ${\rho }^{*}=1, \;\varepsilon =1,\; \sigma =1$时不同温度下L-J体的径向分布函数

    Figure 4.  Radial distribution function of L-J fluid at ${\rho }^{*}=1, \varepsilon =1,\; \sigma =1$ with different temperatures.

    图 5  储能模量和损耗模量曲线 (a)不同温度条件写的储能模量和损耗模量曲线; (b)粘弹性特征弛豫时间$ {\tau }_{\rm{MD}}^{*} $

    Figure 5.  Storage modulus and loss modulus: (a) Storage modulus and loss modulus at different temperatures; (b) viscoelastic characteristic relaxation time $ {\tau }_{\rm{MD}}^{*} $.

    图 6  不同温度、密度以及L-J势参数下$ {\tau }_{\rm{Maxwell}}^{*} $, $ {\tau }_{\rm{LC}}^{*} $, $ {\tau }_{\rm{MD}}^{*} $, $ {\tau }_{{\rm{m}}{\rm{o}}{\rm{d}}{\rm{e}}{\rm{l}}}^{*} $ (a)不同温度条件; (b)不同密度条件; (c)不同势能为0时的原子距离条件; (d)不同势能阱深度条件

    Figure 6.  $ {\tau }_{\rm{Maxwell}}^{*} $, $ {\tau }_{\rm{LC}}^{*} $, $ {\tau }_{\rm{MD}}^{*} $, $ {\tau }_{{\rm{m}}{\rm{o}}{\rm{d}}{\rm{e}}{\rm{l}}}^{*} $ under different T, $ \rho $, ε and σ: (a) Different temperatures; (b) different densities; (c) different distances between atoms when potential is 0; (d) different potential well depths.

    图 7  $\rho^* = 1,\; T^* = 1$, ε = 1, σ = 1条件下L-J体原子扩散或汇聚时间分布

    Figure 7.  Distribution of the dissociation or association time of L-J fluid at $\rho^* = 1,\; T^* = 1$, ε = 1, σ = 1

    图 8  Kramers逃逸速率理论示意图

    Figure 8.  Schematic diagram of Kramers’ rate theory.

    图 9  A原子和A—A分子的数量变化曲线 (a)不同温度条件; (b)不同密度条件; (c)不同势能为0时的原子距离条件; (d)不同势能阱深度条件

    Figure 9.  The quantity curves of A and A—A: (a) Different temperatures; (b) different densities; (c) different distances between atoms when potential is 0; (d) different potential well depths.

    Baidu
  • [1]

    何平笙, 杨海洋, 朱平平 2004 化学通报 9 705Google Scholar

    He P S, Yang H Y, Zhu P P 2004 Chem. Bull. 9 705Google Scholar

    [2]

    金日光, 华幼卿 2007 高分子物理 (北京: 化学工业出版社) 第123页

    Jin R G, Hua Y Q 2007 Polymer Physics (Beijing: Chemical Industry Press) p123 (in Chinese)

    [3]

    Winter H H 1987 Polym. Eng. Sci. 27 1698Google Scholar

    [4]

    Sunthar P 2010 Rheology of Complex Fluids (New York: Springer-Verlag) pp171−191

    [5]

    Agrawal V, Holzworth K, Nantasetphong W, Amirkhizi V A, Oswald J, Nemat-Nasser 2016 J. Polym. Sci., Part B: Polym. Phys. 54 797Google Scholar

    [6]

    Hattkamp R, Daivids P J, Todd B D 2013 Phys. Rev. E 87 032155Google Scholar

    [7]

    Green M S 1954 J. Chem. Phys. 22 398Google Scholar

    [8]

    Kudo R, Toda M, Hashitsume N 2008 Statistical Physics II (Berlin: Springer-Verlag) pp109−145

    [9]

    Guillaud E, Merabia S, De Ligny D, Joly L 2017 Phys. Chem. Chem. Phys. 19 2124Google Scholar

    [10]

    Iwashita T, Egami T 2012 Phys. Rev. Lett. 108 196001Google Scholar

    [11]

    Iwashita T, Nicholson D M, Egami T 2013 Phys. Rev. Lett. 110 205504Google Scholar

    [12]

    Ashwin J, Sen A 2015 Phys. Rev. Lett. 114 055002Google Scholar

    [13]

    Maxwell J C 1867 Philos. Trans. R. Soc. A 157 49Google Scholar

    [14]

    陈艳 2006 硕士学位论文 (兰州: 西北师范大学)

    Chen Y 2006 M. S. Thesis (Lanzhou: Northwest Normal University) (in Chines)

    [15]

    Meier K, Laesecke A, Kabelac S 2004 J. Chem. Phys. 121 3671Google Scholar

    [16]

    Plimption S 1995 J. Comput. Phys. 117 1Google Scholar

    [17]

    Verlet L 1967 Phys. Rev. 159 98Google Scholar

    [18]

    Takahashi K, Yasuoka K, Narumi T 2007 J. Chem. Phys. 127 044107Google Scholar

    [19]

    Frenkel D, Smit B 2002 Understanding Molecular Simulation, Second Edition: From Algorithms to Applications (New York: Academic Press) p589

    [20]

    Frantz Dale B, Plimpton S J, Shephard M S 2010 Eng. Comput. 26 205Google Scholar

    [21]

    Boon J P, Yip S, Percus J K 1980 Molecular Hydrodynamics (New York: Dover Publications) p285

    [22]

    Hattemer G D, Arya G 2015 Macromol. 48 1240Google Scholar

    [23]

    Barnes S C, Lawless B M, Shepherd D E T, Espino D M, Bicknell G R, Bryan R T 2016 J. Mech. Behav. Biomed. 61 250Google Scholar

    [24]

    Heyes D M, Dini D, Brańka A C 2015 Phys. Status Solidi B 252 1514Google Scholar

    [25]

    Abidine Y, Laurent V M, Michel R 2015 Eur. Phys. J. Plus 130 202Google Scholar

    [26]

    Michalet, Xavier 2010 Phys. Rev. E 82 041914Google Scholar

    [27]

    Galliéro, Guillaume, Boned C, Baylaucq A 2005 Ind. Eng. Chem. Res. 44 6963Google Scholar

    [28]

    Morsali A, Goharshadi E K, Mansoori G A, Abbaspour M 2005 Chem. Phys. 310 11Google Scholar

    [29]

    Peter Hänggi, Talkner P, Borkovec M 1990 Rev. Mod. Phys. 62 251Google Scholar

Metrics
  • Abstract views:  13223
  • PDF Downloads:  129
  • Cited By: 0
Publishing process
  • Received Date:  19 January 2020
  • Accepted Date:  03 April 2020
  • Published Online:  20 June 2020
  • /

    返回文章
    返回
    Baidu
    map