Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Spectrum detection based on compressive sensing inside multimode fibers

Meng Fan Zhang Yun-Zuo Feng Wei-Wei Wu Peng-Fei Zou Ge-Yin

Citation:

Spectrum detection based on compressive sensing inside multimode fibers

Meng Fan, Zhang Yun-Zuo, Feng Wei-Wei, Wu Peng-Fei, Zou Ge-Yin
cstr: 32037.14.aps.69.20200014
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • With the rapid development of integrated photonics, expensive and bulky commercial spectrometers force people to make more efforts to investigate high-performance, integrated and low-cost spectrometers. Spectrometers benefiting from the complementary metal-oxide semiconductor (CMOS) technology have greatly enriched the applications of spectrum detection while devices based on optical fibers still have potential development room. Owing to the strong dependence of multimode interference on wavelength generated in a multimode fiber, probe signals of arbitrary spectra could be detected by a detector array integrated on the top and reconstructed by using a compressive sensing (CS) algorithm. The CS algorithm has been widely used in signal processing, which saves more computing storage and time but maintains the same precision. With the interference pattern system, our spectrometer based on a fiber taper achieves a spectral resolution of 20 pm (one order of magnitude better than commercial spectrometers) and a detection bandwidth of more than 200 nm on a device length of 1 mm. After optimizing the energy function, the spectral reconstruction results show excellent detection capability and metamerism effect superior to RGB cameras or human eyes, providing a significant role for portable multi-functional on-chip systems in future.
      Corresponding author: Meng Fan, mengfan3426@126.com
    [1]

    张彤, 张维光, 蔡亚君, 胡晓鸿, 冯野, 王屹山, 于佳 2019 68 234204Google Scholar

    Zhang T, Zhang W G, Cai Y J, Hu X H, Feng Y, Wang Y S, Yu J 2019 Acta Phys. Sin. 68 234204Google Scholar

    [2]

    孙剑, 李唐军, 王目光, 贾楠, 石彦超, 王春灿, 冯素春 2019 68 114210Google Scholar

    Sun J, Li T J, Wang M G, Jia N, Shi Y C, Wang C C, Feng S C 2019 Acta Phys. Sin. 68 114210Google Scholar

    [3]

    Webb K E, Xu Y Q, Erkintalo M, Murdoch S G 2013 Opt. Lett. 38 151Google Scholar

    [4]

    Xu F, Wu Z X, Lu Y Q 2017 Prog. Quantum Electron. 55 35Google Scholar

    [5]

    Morosi J, Berti N, Akrout A, Picozzi A, Guasoni M, Fatome J 2018 Opt. Express 26 845Google Scholar

    [6]

    Bromage J, Paper T 2004 J. Lightwave Technol. 22 79Google Scholar

    [7]

    Mao Y Q, Wang B X, Zhao C X, Wang G Q, Wang R C, Wang H H, Nie J M, Chen Q, Zhao Y, Zhang Q, Zhang J, Chen T Y, Pan J W 2017 Opt. Express 26 6010

    [8]

    Semrau D, Killey R, Bayvel P 2017 Opt. Express 25 13024Google Scholar

    [9]

    Santos J L, Leite A P, Jackson D A 1992 Appl. Opt. 31 7361Google Scholar

    [10]

    涂兴华, 赵宜超 2019 68 244204Google Scholar

    Tu X H, Zhao Y C 2019 Acta Phys. Sin. 68 244204Google Scholar

    [11]

    Zhou D P, Peng W, Chen L, Bao X Y 2019 Opt. Express 27 17069Google Scholar

    [12]

    Chai Q, Luo Y 2019 Opt. Eng. 58 1

    [13]

    刘昱, 任国斌, 靳文星, 吴越, 杨宇光, 简水生 2018 67 014208Google Scholar

    Liu Y, Ren G B, Jin W X, Wu Y, Yang Y G, Jian S S 2018 Acta Phys. Sin. 67 014208Google Scholar

    [14]

    Chen L, Duan Y H, Zhou H D, Zhou X, Zhang C, Zhang X L 2017 Opt. Express 25 9416Google Scholar

    [15]

    Redding B, Alam M, Seifert M, Cao H 2014 Optica 1 175Google Scholar

    [16]

    Shaw M J, Henson R L, Houk S E, Westhoff J W, Jones M W, Richter-Addo G 2002 J. Electroanal. Chem. 534 47Google Scholar

    [17]

    Hornig G J, Harrison T R, Bu L, Azmayesh-Fard S, Decorby R G 2019 OSA Continuum 2 495Google Scholar

    [18]

    Hang Q, Ung B, Syed I, Guo N, Skorobogatiy M 2010 Appl. Opt. 49 4791Google Scholar

    [19]

    Xu Z C, Wang Z L, Sullivan M, Brady D, Foulger S H, Adibi A 2003 Opt. Express 11 2126Google Scholar

    [20]

    Yang T, Xu C, Ho H P, Zhu Y Y, Hong X H, Wang Q J, Chen Y C, Li X A, Zhou X H, Yi M D, Huang W 2015 Opt. Lett. 40 3217Google Scholar

  • 图 1  (a)基于多模光纤的光谱探测系统示意图; (b)不同波长下得到的模式干涉图案

    Figure 1.  (a) The structural diagram of spectroscopy detection based on the multimode fiber; (b) the multimode interference patterns at different wavelengths.

    图 2  基于多模光纤光谱计的光谱探测原理

    Figure 2.  The detecting principle of the spectrometer based on a multimode fiber.

    图 3  (a)两条分立窄带信号的重建光谱, 证明该光谱计分辨率为20 pm; (b)重建误差与噪声阈值的函数关系

    Figure 3.  (a) The reconstruction of two narrow lines, indicating the resolution is 20 pm; (b) The reconstruction error as a function of noise threshold.

    图 4  (a)和(b)不同宽谱LED光源组合情况下, 该光纤光谱计的光谱重建结果

    Figure 4.  (a) and (b) are spectral reconstructions of the fiber-based spectrometer under different LED-source combinations.

    图 5  (a)基于多模光纤的红外光谱计; (b)基于平板型多模波导的光谱计; (c)可与智能手机集成的便携式光谱计

    Figure 5.  (a) The infrared spectrometer based on a multimode fiber; (b) The spectrometer based on a planar multimode waveguide; (c) A portable spectrometer integrated with a smart phone.

    Baidu
  • [1]

    张彤, 张维光, 蔡亚君, 胡晓鸿, 冯野, 王屹山, 于佳 2019 68 234204Google Scholar

    Zhang T, Zhang W G, Cai Y J, Hu X H, Feng Y, Wang Y S, Yu J 2019 Acta Phys. Sin. 68 234204Google Scholar

    [2]

    孙剑, 李唐军, 王目光, 贾楠, 石彦超, 王春灿, 冯素春 2019 68 114210Google Scholar

    Sun J, Li T J, Wang M G, Jia N, Shi Y C, Wang C C, Feng S C 2019 Acta Phys. Sin. 68 114210Google Scholar

    [3]

    Webb K E, Xu Y Q, Erkintalo M, Murdoch S G 2013 Opt. Lett. 38 151Google Scholar

    [4]

    Xu F, Wu Z X, Lu Y Q 2017 Prog. Quantum Electron. 55 35Google Scholar

    [5]

    Morosi J, Berti N, Akrout A, Picozzi A, Guasoni M, Fatome J 2018 Opt. Express 26 845Google Scholar

    [6]

    Bromage J, Paper T 2004 J. Lightwave Technol. 22 79Google Scholar

    [7]

    Mao Y Q, Wang B X, Zhao C X, Wang G Q, Wang R C, Wang H H, Nie J M, Chen Q, Zhao Y, Zhang Q, Zhang J, Chen T Y, Pan J W 2017 Opt. Express 26 6010

    [8]

    Semrau D, Killey R, Bayvel P 2017 Opt. Express 25 13024Google Scholar

    [9]

    Santos J L, Leite A P, Jackson D A 1992 Appl. Opt. 31 7361Google Scholar

    [10]

    涂兴华, 赵宜超 2019 68 244204Google Scholar

    Tu X H, Zhao Y C 2019 Acta Phys. Sin. 68 244204Google Scholar

    [11]

    Zhou D P, Peng W, Chen L, Bao X Y 2019 Opt. Express 27 17069Google Scholar

    [12]

    Chai Q, Luo Y 2019 Opt. Eng. 58 1

    [13]

    刘昱, 任国斌, 靳文星, 吴越, 杨宇光, 简水生 2018 67 014208Google Scholar

    Liu Y, Ren G B, Jin W X, Wu Y, Yang Y G, Jian S S 2018 Acta Phys. Sin. 67 014208Google Scholar

    [14]

    Chen L, Duan Y H, Zhou H D, Zhou X, Zhang C, Zhang X L 2017 Opt. Express 25 9416Google Scholar

    [15]

    Redding B, Alam M, Seifert M, Cao H 2014 Optica 1 175Google Scholar

    [16]

    Shaw M J, Henson R L, Houk S E, Westhoff J W, Jones M W, Richter-Addo G 2002 J. Electroanal. Chem. 534 47Google Scholar

    [17]

    Hornig G J, Harrison T R, Bu L, Azmayesh-Fard S, Decorby R G 2019 OSA Continuum 2 495Google Scholar

    [18]

    Hang Q, Ung B, Syed I, Guo N, Skorobogatiy M 2010 Appl. Opt. 49 4791Google Scholar

    [19]

    Xu Z C, Wang Z L, Sullivan M, Brady D, Foulger S H, Adibi A 2003 Opt. Express 11 2126Google Scholar

    [20]

    Yang T, Xu C, Ho H P, Zhu Y Y, Hong X H, Wang Q J, Chen Y C, Li X A, Zhou X H, Yi M D, Huang W 2015 Opt. Lett. 40 3217Google Scholar

Metrics
  • Abstract views:  8566
  • PDF Downloads:  92
  • Cited By: 0
Publishing process
  • Received Date:  03 January 2020
  • Accepted Date:  07 April 2020
  • Available Online:  09 May 2020
  • Published Online:  05 July 2020
  • /

    返回文章
    返回
    Baidu
    map