Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical study on discharge characteristics in ultra-high frequency band modulated by pulses with electrodes covered by barriers

Gao Shu-Han Wang Xu-Cheng Zhang Yuan-Tao

Citation:

Numerical study on discharge characteristics in ultra-high frequency band modulated by pulses with electrodes covered by barriers

Gao Shu-Han, Wang Xu-Cheng, Zhang Yuan-Tao
cstr: 32037.14.aps.69.20191853
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Pulse-modulated discharge is an effective way to improve the stability of radio-frequency (rf) discharges. Previous studies have shown that with the power frequency increasing to the ultra-high frequency (UHF) band, the introduction of pulse modulation in rf discharges will bring about new discharge behaviors. In this paper, the fluid model is adopted to numerically investigate the new discharge characteristics in dielectric barrier discharges (DBDs) with the rf frequency larger than 500 MHz. A very large current peak occurs in the first positive and negative half cycle during the power-on phase, respectively. The spatial structure of electric field is given to further understand the underpinning physics of the large current peaks. Furthermore, the effects of duty cycle, modulation frequency and voltage modulation rates on the large current peaks are examined based on the computational data. This numerical study will deepen the understanding of DBDs modulated by pulses in the UHF band.
      Corresponding author: Zhang Yuan-Tao, ytzhang@sdu.edu.cn
    [1]

    Park J, Henins I, Herrmann H W, Selwyn G S 2001 J. Appl. Phys. 89 15Google Scholar

    [2]

    Iza F, Kim G J, Lee S M, Lee J K, Walsh J L, Zhang Y T, Kong M G 2008 Plasma Processes Polym. 5 322Google Scholar

    [3]

    Walsh J L, Zhang Y T, Iza F, Kong M G 2008 Appl. Phys. Lett. 93 221505Google Scholar

    [4]

    Zhang Y T, Li Q Q, Lou J, Li Q M 2010 Appl. Phys. Lett. 97 141504Google Scholar

    [5]

    Massines F, Rabehi A, Decomps P, Gadri R B, Ségur P, Mayoux C 1998 J. Appl. Phys. 83 2950Google Scholar

    [6]

    Lou J, Zhang Y T T 2013 IEEE Trans. Plasma Sci. 41 274Google Scholar

    [7]

    Balcon N, Hagelaar G J M, Boeuf J P 2008 IEEE Trans. Plasma Sci. 36 2782Google Scholar

    [8]

    Fridman G, Friedman G, Gutsol A, Shekhter A B, Vasilets V N, Fridman A 2008 Plasma Processes Polym. 5 503Google Scholar

    [9]

    Laroussi M 2005 Plasma Processes Polym. 2 391Google Scholar

    [10]

    Sousa J S, Niemi K, Cox L J, Algwari Q T, Gans T, O’connell D 2011 J. Appl. Phys. 109 123302Google Scholar

    [11]

    Waskoenig J, Niemi K, Knake N, Graham L M, Reuter S, Schulz-von der Gathen V, Gans T 2010 Plasma Sources Sci. Technol. 19 045018Google Scholar

    [12]

    Zhang Y T, Chi Y Y, He J 2014 Plasma Processes Polym. 11 639Google Scholar

    [13]

    Moravej M, Babayan S E, Nowling G R, Yang X, Hicks R F 2004 Plasma Sources Sci. Technol. 13 8Google Scholar

    [14]

    Boeuf J P, Pitchford L C 2005 J. Appl. Phys. 97 103307Google Scholar

    [15]

    Farouk T, Farouk B, Gutsol A, Fridman A 2008 Plasma Sources Sci. Technol. 17 035015Google Scholar

    [16]

    Zhang Y T, He J 2013 Phys. Plasmas 20 013502Google Scholar

    [17]

    Kwon H C, Jung S Y, Kim H Y, Won I H, Lee J K 2014 Phys. Plasmas 21 033511Google Scholar

    [18]

    He J, Hu J, Liu D W, Zhang Y T 2013 Plasma Sources Sci. Technol. 22 035008Google Scholar

    [19]

    Huang X, Sun L Q, Bao Y, Zhang J, Shi J J 2011 Phys. Plasmas 18 033503Google Scholar

    [20]

    Huo W G, Jian S J, Yao J, Ding Z F 2014 Phys. Plasmas 21 053505Google Scholar

    [21]

    Hu J T, Liu X Y, Liu J H, Xiong Z L, Liu D W, Lu X P, Iza F, Kong M G 2012 Phys. Plasmas 19 063505Google Scholar

    [22]

    Zhang Y T, Liu Y, Liu B 2017 Plasma Sci. Technol. 19 085402Google Scholar

    [23]

    Lee M U, Lee J K, Yun G S 2018 Plasma Processes Polym. 15 1700124Google Scholar

    [24]

    Wang G, Kuang Y, Zhang Y T 2020 Plasma Sci. Technol. 22 015404

    [25]

    Liu X Y, Hu J T, Liu J H, Xiong Z L, Liu D W, Lu X P, Shi J J 2012 Appl. Phys. Lett. 101 043705Google Scholar

    [26]

    Leins M, Kopecki J, Gaiser S, Schulz A, Walker M, Schumacher U, Stroth U, Hirth T 2014 Contrib. Plasma Phys. 54 14Google Scholar

    [27]

    王艳辉, 王德真 2003 52 1694Google Scholar

    Wang Y H, Wang D Z 2003 Acta Phys. Sin. 52 1694Google Scholar

    [28]

    Zhang Y T, Wang D Z, Wang Y H 2005 Phys. Plasmas 12 103508Google Scholar

    [29]

    徐学基, 诸定昌 1996 气体放电物理 (上海: 复旦大学出版社) 第277页

    Xu X J, Zhu D C 1996 Discharge Physics of Gas (Shanghai: Fudan University Press) p277 (in Chinese)

    [30]

    张远涛, 王德真, 王艳辉 2005 54 4808Google Scholar

    Zhang Y T, Wang D Z, Wang Y H 2005 Acta Phys. Sin. 54 4808Google Scholar

    [31]

    Lee D, Park J M, Hong S H, Kim Y 2005 IEEE Trans. Plasma Sci. 33 949Google Scholar

    [32]

    Zhang Y, Gu B A, Peng X W, Wang D Z, Wang W C 2008 Thin Solid Films 516 7547Google Scholar

    [33]

    Lee H W, Park G Y, Seo Y S, Im Y H, Shim S B, Lee H J 2011 J. Phys. D: Appl. Phys. 44 053001Google Scholar

    [34]

    Yuan X H, Raja L L 2003 IEEE Trans. Plasma Sci. 31 495Google Scholar

    [35]

    Zhang Y T, Wang D Z, Kong M G 2006 J. Appl. Phys. 100 063304Google Scholar

  • 图 1  调制频率为6.25 MHz, 电压为800 V, 占空比为60%时脉冲调制的介质阻挡电流脉冲波形

    Figure 1.  Temple evolution of current densities in DBDs with a modulation frequency of 6.25 MHz, voltage amplitude of 800 V and duty cycle of 60%.

    图 2  调制频率为6.25 MHz, 电压为800 V时, 占空比从10%到100%的脉冲调制电流密度波形

    Figure 2.  Temporal evolution of current densities at a given modulation frequency of 6.25 MHz and voltage amplitude of 800 V for various duty cycles from 10% to 100%.

    图 3  双电流脉冲正负峰值及稳定后的电流脉冲峰值随占空比的变化曲线

    Figure 3.  Peak values of current densities as a function of duty cycle at a given modulation frequency and voltage amplitude.

    图 4  正电流脉冲峰值时刻电场强度的空间分布随占空比的变化

    Figure 4.  Spatial distribution of electric fields at the moment when the positive current density reaches the top value for various duty cycles.

    图 5  正电流脉冲峰值时刻电子密度(实线)与离子密度(虚线)随占空比的变化曲线

    Figure 5.  Spatial profiles of electron density (solid line) and ion density (dash line) at the instant when the positive current density reaches the peak value for various duty cycles.

    图 6  负电流脉冲峰值时刻电场强度的空间分布随占空比的变化

    Figure 6.  Spatial distribution of the electric fields at the moment when the negative current density reaches the top value for various duty cycles.

    图 7  电压为600 V, 占空比为60%时, 调制频率从6.25 MHz到50 MHz的脉冲调制电流密度波形

    Figure 7.  Temporal evolution of current densities at a given voltage amplitude of 600 V and duty cycle of 60% for various modulation frequencies from 6.25 MHz to 50 MHz

    图 8  电压为800 V, 占空比为60%时, 双电流脉冲正负峰值及稳定后的电流脉冲峰值随调制频率的变化曲线

    Figure 8.  Peak values of current densities as a function of modulation frequency at a given applied voltage of 800 V and duty cycle of 60%.

    图 9  调制频率为6.25 MHz, 电压为800 V时, 电压调制比从0 (对应电压为0)到1.0(对应电压为800 V)的脉冲调制电流密度波形

    Figure 9.  Temporal evolutions of current densities at a given modulation frequency of 6.25 MHz and voltage amplitude of 800 V for various voltage modulated rates from 0 to 1.0.

    图 10  调制频率为6.25 MHz, 电压为800 V时, 双电流脉冲正负峰值及稳定后的电流脉冲峰值随电压调制比的变化曲线

    Figure 10.  Peak values of current densities as a function of voltage modulated rates at a given modulate frequency of 6.25 MHz and voltage amplitude of 800 V.

    Baidu
  • [1]

    Park J, Henins I, Herrmann H W, Selwyn G S 2001 J. Appl. Phys. 89 15Google Scholar

    [2]

    Iza F, Kim G J, Lee S M, Lee J K, Walsh J L, Zhang Y T, Kong M G 2008 Plasma Processes Polym. 5 322Google Scholar

    [3]

    Walsh J L, Zhang Y T, Iza F, Kong M G 2008 Appl. Phys. Lett. 93 221505Google Scholar

    [4]

    Zhang Y T, Li Q Q, Lou J, Li Q M 2010 Appl. Phys. Lett. 97 141504Google Scholar

    [5]

    Massines F, Rabehi A, Decomps P, Gadri R B, Ségur P, Mayoux C 1998 J. Appl. Phys. 83 2950Google Scholar

    [6]

    Lou J, Zhang Y T T 2013 IEEE Trans. Plasma Sci. 41 274Google Scholar

    [7]

    Balcon N, Hagelaar G J M, Boeuf J P 2008 IEEE Trans. Plasma Sci. 36 2782Google Scholar

    [8]

    Fridman G, Friedman G, Gutsol A, Shekhter A B, Vasilets V N, Fridman A 2008 Plasma Processes Polym. 5 503Google Scholar

    [9]

    Laroussi M 2005 Plasma Processes Polym. 2 391Google Scholar

    [10]

    Sousa J S, Niemi K, Cox L J, Algwari Q T, Gans T, O’connell D 2011 J. Appl. Phys. 109 123302Google Scholar

    [11]

    Waskoenig J, Niemi K, Knake N, Graham L M, Reuter S, Schulz-von der Gathen V, Gans T 2010 Plasma Sources Sci. Technol. 19 045018Google Scholar

    [12]

    Zhang Y T, Chi Y Y, He J 2014 Plasma Processes Polym. 11 639Google Scholar

    [13]

    Moravej M, Babayan S E, Nowling G R, Yang X, Hicks R F 2004 Plasma Sources Sci. Technol. 13 8Google Scholar

    [14]

    Boeuf J P, Pitchford L C 2005 J. Appl. Phys. 97 103307Google Scholar

    [15]

    Farouk T, Farouk B, Gutsol A, Fridman A 2008 Plasma Sources Sci. Technol. 17 035015Google Scholar

    [16]

    Zhang Y T, He J 2013 Phys. Plasmas 20 013502Google Scholar

    [17]

    Kwon H C, Jung S Y, Kim H Y, Won I H, Lee J K 2014 Phys. Plasmas 21 033511Google Scholar

    [18]

    He J, Hu J, Liu D W, Zhang Y T 2013 Plasma Sources Sci. Technol. 22 035008Google Scholar

    [19]

    Huang X, Sun L Q, Bao Y, Zhang J, Shi J J 2011 Phys. Plasmas 18 033503Google Scholar

    [20]

    Huo W G, Jian S J, Yao J, Ding Z F 2014 Phys. Plasmas 21 053505Google Scholar

    [21]

    Hu J T, Liu X Y, Liu J H, Xiong Z L, Liu D W, Lu X P, Iza F, Kong M G 2012 Phys. Plasmas 19 063505Google Scholar

    [22]

    Zhang Y T, Liu Y, Liu B 2017 Plasma Sci. Technol. 19 085402Google Scholar

    [23]

    Lee M U, Lee J K, Yun G S 2018 Plasma Processes Polym. 15 1700124Google Scholar

    [24]

    Wang G, Kuang Y, Zhang Y T 2020 Plasma Sci. Technol. 22 015404

    [25]

    Liu X Y, Hu J T, Liu J H, Xiong Z L, Liu D W, Lu X P, Shi J J 2012 Appl. Phys. Lett. 101 043705Google Scholar

    [26]

    Leins M, Kopecki J, Gaiser S, Schulz A, Walker M, Schumacher U, Stroth U, Hirth T 2014 Contrib. Plasma Phys. 54 14Google Scholar

    [27]

    王艳辉, 王德真 2003 52 1694Google Scholar

    Wang Y H, Wang D Z 2003 Acta Phys. Sin. 52 1694Google Scholar

    [28]

    Zhang Y T, Wang D Z, Wang Y H 2005 Phys. Plasmas 12 103508Google Scholar

    [29]

    徐学基, 诸定昌 1996 气体放电物理 (上海: 复旦大学出版社) 第277页

    Xu X J, Zhu D C 1996 Discharge Physics of Gas (Shanghai: Fudan University Press) p277 (in Chinese)

    [30]

    张远涛, 王德真, 王艳辉 2005 54 4808Google Scholar

    Zhang Y T, Wang D Z, Wang Y H 2005 Acta Phys. Sin. 54 4808Google Scholar

    [31]

    Lee D, Park J M, Hong S H, Kim Y 2005 IEEE Trans. Plasma Sci. 33 949Google Scholar

    [32]

    Zhang Y, Gu B A, Peng X W, Wang D Z, Wang W C 2008 Thin Solid Films 516 7547Google Scholar

    [33]

    Lee H W, Park G Y, Seo Y S, Im Y H, Shim S B, Lee H J 2011 J. Phys. D: Appl. Phys. 44 053001Google Scholar

    [34]

    Yuan X H, Raja L L 2003 IEEE Trans. Plasma Sci. 31 495Google Scholar

    [35]

    Zhang Y T, Wang D Z, Kong M G 2006 J. Appl. Phys. 100 063304Google Scholar

Metrics
  • Abstract views:  9400
  • PDF Downloads:  105
  • Cited By: 0
Publishing process
  • Received Date:  06 December 2019
  • Accepted Date:  05 March 2020
  • Published Online:  05 June 2020
  • /

    返回文章
    返回
    Baidu
    map