Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Microstructure and thermoelectric property of (Bi1–xTbx)2(Te0.9Se0.1)3 fabricated by high pressure sintering technique

Zou Ping Lü Dan Xu Gui-Ying

Citation:

Microstructure and thermoelectric property of (Bi1–xTbx)2(Te0.9Se0.1)3 fabricated by high pressure sintering technique

Zou Ping, Lü Dan, Xu Gui-Ying
cstr: 32037.14.aps.69.20191561
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Nanocrystalline bulk materials n-type (Bi1–xTbx)2(Te0.9Se0.1)3 (x = 0, 0.002, 0.004, 0.008) are fabricated by high pressure sintering (HPS) technique. The HPS samples are then annealed for 36 h in a vacuum at 633 K. The phase compositions and crystal structure of HPS sample are analyzed by X-ray diffraction. The microscopic morphology of HPS sample is observed by field-emission scanning electron microscopy. The electric conductivity, Seebeck coefficient, and thermal conductivity of the HPS sample and annealed sample are measured in a temperature range from room temperature to 473 K. The effects of Tb content on crystal structure and thermoelectric properties of the sample are systematically studied. The results show that HPS sample consists of nanoparticles. With the increase of content of Tb, the cell volume increases. Besides, the power factor increases but thermal conductivity decreases through doping Tb, thus the optimal figure of merit (ZT) value increases. The Tb doping amount of x = 0.004 is an optimal doping amount. At this doping amount, the maximum ZT of 0.29 is achieved, which is enhanced by 32% compared with the ZT value of undoped sample. The thermoelectric performance can be improved significantly by annealing. The thermal conductivity of the annealed sample with x = 0.004 is 0.9 W·m–1·K–1 at 373 K, decreased by 23% compared with the thermal conductivity of HPS sample. Consequently, the ZT value of annealed sample is significantly higher than that of HPS sample. The maximum thermoelectric ZT of 0.99 is achieved for annealed sample with x =0.004 at 373 K. Furthermore, it is worthwhile to note that this annealed sample possesses a ZT value larger than 0.8 when the temperature is higher than 323 K.
      Corresponding author: Zou Ping, zouping0813@163.com
    [1]

    DiSalvo F J 1999 Science 285 703Google Scholar

    [2]

    Bell L E 2008 Science 321 1457Google Scholar

    [3]

    Wu D, Zhao L D, Hao SQ, Jiang Q K, Zheng F S, Doak J W, Wu H J, Chi H, Gelbstein Y, Uher C, Wolverton C, Kanatzidis M, He J Q 2014 J. Am. Chem. Soc. 136 11412Google Scholar

    [4]

    Zhou Y M, Zhao L D 2017 Adv. Mater. 29 1702676Google Scholar

    [5]

    Chang C, Wu M H, He D S, Pei Y L, Wu C F, Wu X F, Yu H L, Zhu F Y, Wang K D, Chen Y, Wang K D, Huang L, Li J F, He J Q, Zhao L D 2018 Science 360 778Google Scholar

    [6]

    Snyder G J, Toberer E S 2008 Nat. Mater. 7 105Google Scholar

    [7]

    Wang Z L, Akao T, Onda T, Chen Z C 2017 Scripta Mater. 136 111Google Scholar

    [8]

    Pan Y, Wei T R, Cao Q, Li J F 2015 Mater. Sci. Eng. B 197 75Google Scholar

    [9]

    Jiang C P, Fan X A, Feng B, Hu J, Xiang Q S, Li G Q, Li Y W, He Z 2017 J. Alloys Compd. 692 885Google Scholar

    [10]

    王善禹, 谢文杰, 李涵, 唐新峰 2010 59 8927Google Scholar

    Wang S Y, Xie W J, Li H, Tang X F 2010 Acta Phys. Sin. 59 8927Google Scholar

    [11]

    Rong Z Z, Fan X A, Yang F, Cai X Z, Han X W, Li G Q 2016 Mater. Res. Bull. 83 122Google Scholar

    [12]

    Xu GY, Niu ST, Wu XF 2012 J. Appl. Phys. 112 073708Google Scholar

    [13]

    Yu F R, Xu B, Zhang J J, Yu D L, He J L, Liu Z Y, Tian Y J 2012 Mater. Res. Bull. 47 1432Google Scholar

    [14]

    May A F, Singh D J, Snyder G J 2009 Phys. Rev. B 79 153101Google Scholar

    [15]

    Zhang Y H, Zhu T J, Tu J P, Zhao X B 2007 Mater. Chem. Phys. 103 484Google Scholar

    [16]

    徐桂英, 邹平, 王松, 张艳华 2015 稀有金属材料与工程 44 950

    Xu G Y, Zou P, Wang S, Zhang Y H 2015 Rare Metal Mat. Eng. 44 950

    [17]

    Sharp J W, Poon S J, Goldsmid H J 2001 Phys. Status Solidi A 187 507Google Scholar

    [18]

    Kim DH, MitaniT 2005 J. Alloys Compd. 399 14Google Scholar

    [19]

    Slack GA, Hussain MA 1991 J. Appl. Phys. 70 2694Google Scholar

    [20]

    Wang SY, Xie WJ, Li H, Tang X F 2011 Intermetallics 19 1024Google Scholar

    [21]

    Wu F, Song H Z, Jia J F, Gao F, Zhang Y J, Hu X 2013 Phys. Status Solidi A 210 1183Google Scholar

  • 图 1  高压烧结样品(Bi1–xTbx)2(Te0.9Se0.1)3 (x = 0, 0.002, 0.004, 0.008)的XRD图谱

    Figure 1.  XRD patterns of the (Bi1–xTbx)2(Te0.9Se0.1)3 (x = 0, 0.002, 0.004, 0.008) HPS samples.

    图 2  Tb掺杂量为x = 0.004的高压烧结样品(Bi1–xTbx)2(Te0.9Se0.1)3的FE-SEM照片

    Figure 2.  FE-SEM of the (Bi1–xTbx)2(Te0.9Se0.1)3 HPS sample (x = 0.004).

    图 3  Tb不同掺杂量的高压烧结样品的电导率随温度的变化

    Figure 3.  The temperature dependences of electrical conducti-vities for the HPS samples doped with different Tb contents.

    图 4  Tb不同掺杂量的高压烧结样品的Seebeck系数随温度的变化

    Figure 4.  The temperature dependence of Seebeck coefficient for the HPS samples doped with different Tb contents.

    图 5  Tb不同掺杂量的高压烧结样品的功率因子随温度的变化

    Figure 5.  Temperature dependence of power factor for the HPS samples doped with different Tb contents.

    图 6  高压烧结样品的热导率随温度变化 (a) 未掺杂样品; (b) 掺杂量为x = 0.004的样品

    Figure 6.  Temperature dependence of thermal conductivities for the HPS samples: (a) Tb-free sample (x = 0); (b)Tb-doped sample (x = 0.004).

    图 7  未掺杂及掺杂量为x = 0.004的样品的ZT值随温度变化的关系

    Figure 7.  Temperature dependence of the figure of merit ZT for the Tb-free HPS sample and Tb-doped HPS sample with x = 0.004.

    图 8  Tb不同掺杂量的退火样品的电导率随温度的变化

    Figure 8.  Temperature dependence of electrical conductivity for the annealed samples doped with different Tb contents.

    图 9  Tb不同掺杂量的退火样品的Seebeck系数随温度的变化

    Figure 9.  Temperature dependence of Seebeck coefficient for the annealed samples doped with different Tb contents.

    图 10  Tb不同掺杂量的退火样品的功率因子随温度的变化

    Figure 10.  Temperature dependence of power factor for the annealed samples doped with different Tb contents.

    图 11  Tb掺杂量为x = 0.004的退火样品的热导率随温度变化的关系

    Figure 11.  Temperature dependence of thermal conductivity for the annealed sample with x = 0.004.

    图 12  未掺杂及掺杂量为x = 0.004的退火样品的ZT值随温度变化的关系

    Figure 12.  Temperature dependence of the figure of merit ZT for the Tb-free annealed sample and Tb-doped annealed sample with x = 0.004.

    表 1  (Bi1–xTbx)2(Te0.9Se0.1)3 (x = 0, 0.002, 0.004, 0.008)样品的晶格常数

    Table 1.  Lattice constants of (Bi1–xTbx)2(Te0.9Se0.1)3 (x = 0, 0.002, 0.004, 0.008).

    Samplex = 0x = 0.002x = 0.004x = 0.008
    a4.37484.380864.382054.38468
    c30.345630.3493130.3501330.35389
    V3502.96504.41504.70505.37
    DownLoad: CSV

    表 2  (Bi1–xTbx)2(Te0.9Se0.1)3样品的载流子浓度和迁移率

    Table 2.  Carrier concentrations and mobility of (Bi1–xTbx)2(Te0.9Se0.1)3 samples.

    SamplesCarrier concentrationn/1019 cm–3Carrier mobility μ/cm2·V–1·s–1
    x = 0 (HPS)1.92197.98
    x = 0.002 (HPS)3.95133.53
    x = 0.004 (HPS)6.5195.31
    x = 0.008 (HPS)7.1792.39
    x = 0.004 (Annealed)1.36599.34
    x = 0.008 (Annealed)1.77491.17
    DownLoad: CSV
    Baidu
  • [1]

    DiSalvo F J 1999 Science 285 703Google Scholar

    [2]

    Bell L E 2008 Science 321 1457Google Scholar

    [3]

    Wu D, Zhao L D, Hao SQ, Jiang Q K, Zheng F S, Doak J W, Wu H J, Chi H, Gelbstein Y, Uher C, Wolverton C, Kanatzidis M, He J Q 2014 J. Am. Chem. Soc. 136 11412Google Scholar

    [4]

    Zhou Y M, Zhao L D 2017 Adv. Mater. 29 1702676Google Scholar

    [5]

    Chang C, Wu M H, He D S, Pei Y L, Wu C F, Wu X F, Yu H L, Zhu F Y, Wang K D, Chen Y, Wang K D, Huang L, Li J F, He J Q, Zhao L D 2018 Science 360 778Google Scholar

    [6]

    Snyder G J, Toberer E S 2008 Nat. Mater. 7 105Google Scholar

    [7]

    Wang Z L, Akao T, Onda T, Chen Z C 2017 Scripta Mater. 136 111Google Scholar

    [8]

    Pan Y, Wei T R, Cao Q, Li J F 2015 Mater. Sci. Eng. B 197 75Google Scholar

    [9]

    Jiang C P, Fan X A, Feng B, Hu J, Xiang Q S, Li G Q, Li Y W, He Z 2017 J. Alloys Compd. 692 885Google Scholar

    [10]

    王善禹, 谢文杰, 李涵, 唐新峰 2010 59 8927Google Scholar

    Wang S Y, Xie W J, Li H, Tang X F 2010 Acta Phys. Sin. 59 8927Google Scholar

    [11]

    Rong Z Z, Fan X A, Yang F, Cai X Z, Han X W, Li G Q 2016 Mater. Res. Bull. 83 122Google Scholar

    [12]

    Xu GY, Niu ST, Wu XF 2012 J. Appl. Phys. 112 073708Google Scholar

    [13]

    Yu F R, Xu B, Zhang J J, Yu D L, He J L, Liu Z Y, Tian Y J 2012 Mater. Res. Bull. 47 1432Google Scholar

    [14]

    May A F, Singh D J, Snyder G J 2009 Phys. Rev. B 79 153101Google Scholar

    [15]

    Zhang Y H, Zhu T J, Tu J P, Zhao X B 2007 Mater. Chem. Phys. 103 484Google Scholar

    [16]

    徐桂英, 邹平, 王松, 张艳华 2015 稀有金属材料与工程 44 950

    Xu G Y, Zou P, Wang S, Zhang Y H 2015 Rare Metal Mat. Eng. 44 950

    [17]

    Sharp J W, Poon S J, Goldsmid H J 2001 Phys. Status Solidi A 187 507Google Scholar

    [18]

    Kim DH, MitaniT 2005 J. Alloys Compd. 399 14Google Scholar

    [19]

    Slack GA, Hussain MA 1991 J. Appl. Phys. 70 2694Google Scholar

    [20]

    Wang SY, Xie WJ, Li H, Tang X F 2011 Intermetallics 19 1024Google Scholar

    [21]

    Wu F, Song H Z, Jia J F, Gao F, Zhang Y J, Hu X 2013 Phys. Status Solidi A 210 1183Google Scholar

Metrics
  • Abstract views:  11150
  • PDF Downloads:  88
  • Cited By: 0
Publishing process
  • Received Date:  14 October 2019
  • Accepted Date:  19 December 2019
  • Published Online:  05 March 2020
  • /

    返回文章
    返回
    Baidu
    map