Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Corrosion mechanism of T1 phase in Al-Cu-Li alloy: First-principles calculations

Kong Min Wu Jing-Jing Han Tian-Ru Tang Xin

Citation:

Corrosion mechanism of T1 phase in Al-Cu-Li alloy: First-principles calculations

Kong Min, Wu Jing-Jing, Han Tian-Ru, Tang Xin
cstr: 32037.14.aps.69.20191365
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • First principle calculations in the framework of density functional theory are performed to calculate the T1 phase (Al6Cu4Li3), which is the main precipitation in Al-Cu-Li alloy. In this paper, the surface energy values and surface electron work functions of different termination surfaces in T1 phase are calculated. Meanwhile, the effects of stress and common alloying elements on the T1 phase are also discussed. There are 10 different termination surfaces for T1 phase. The surface energy varies between 0.59 and 1.28 J·m–2. It is found that the surface energy is dependent on the atomic configuration of the surface. The relaxation of the surficial atoms leads to low surface energy. For work function, it is controlled by the surficial atomic species. When a surface contains Li atoms, low work function is expected, which can be attributed to the low electronegativity of Li atom. The (010) T1 surface with Li termination has a minimum work function, 3.40 eV. In addition, as is different from pure metal, work function of some T1 surfaces shows unique behavior under stress state. The (010) T1 surface with Al and Cu termination has an increasing work function under the action of tensile strain. In fact, tensile strain induces the first and second surface layer to merge, which can improve the surface electronic density and raise work function. As a result, the corrosion resistance can be enhanced. Finally, the effect of alloying elements on the precipitation of T1 phase is studied. Al(111)/T1(010) interface is built and the substitution energy of Mg, Zn and Ag are calculated. Comparing with Mg and Zn atom, the energy of Ag atom to substitute the interfacial one is low, meaning that Ag can relax the strain in the interface. Ag atom has the closest atomic radius to Al atom, and the same chemical valence as Li atom. Therefore, Ag atom is more likely to promote the precipitation of T1 phase, which is also in agreement with the experimental result.
      Corresponding author: Tang Xin, xtang@glut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11364009) and the Guangxi Major Science and Technology Project, China (Grant No.AA17129005)
    [1]

    程超, 王逊, 孙嘉兴, 曹超铭, 马云莉, 刘艳侠 2018 67 197101Google Scholar

    Cheng C, Wang X, Sun J X, Cao C M, Ma Y L, Liu Y X 2018 Acta Phys. Sin. 67 197101Google Scholar

    [2]

    Jr. E A S, Staley J T 1996 Prog. Aerosp. Sci 32 131Google Scholar

    [3]

    Kim K, Zhou B C, Wolverton C 2018 Acta Mater. 145 337Google Scholar

    [4]

    Rioja R J 1998 Mater Sci Eng, A 257 100Google Scholar

    [5]

    Kim Y S, Park I J, An B S, Park J G, Yang C W, Lee Y H, Kim J G 2020 Mater. Chem. Phys. 241 122275Google Scholar

    [6]

    段永华, 孙勇, 何建洪, 彭明军, 郭中正 2012 61 046101Google Scholar

    Duan Y H, Sun Y, He J H, Peng M J, Guo Z Z 2012 Acta Phys. Sin. 61 046101Google Scholar

    [7]

    Tao Y, Xiong T, Chao S, Kong L, Cui X, Li T, Song G L 2010 Corros. Sci. 52 3191Google Scholar

    [8]

    Wadeson D A, Zhou X, Thompson G E, Skeldon P, Oosterkamp L D, Scamans G 2006 Corros. Sci. 48 887Google Scholar

    [9]

    Vera R, Delgado D, Rosales B M 2006 Corros. Sci. 48 2882Google Scholar

    [10]

    刘贵立 2010 59 2708

    Liu G L 2010 Acta Phys. Sin. 59 2708

    [11]

    Wang X Y, Jang J T, Li G A, Wang X M, Sun J, Zhen L 2020 J. Alloy Compd. 815 152469

    [12]

    Li J F, Zheng Z Q, Li S C, Chen W J, Ren W D, Zhao X S 2007 Corros. Sci. 49 2436Google Scholar

    [13]

    Eifert A J, Thomas J P, Jr R G R 1999 Scr. Mater. 40 929Google Scholar

    [14]

    Zhang X, Zhou X, Hashimoto T, Liu B, Luo C, Sun Z, Tang Z, Lu F, Ma Y 2018 Corros. Sci. 132 1Google Scholar

    [15]

    Buchheit R G, Moran J P, Stoner G E 1994 Corrosion 50 120Google Scholar

    [16]

    王健, 王绍青 2014 物理化学学报 30 551Google Scholar

    Wang J, Wang S Q 2014 Acta Phys-Chim. Sin. 30 551Google Scholar

    [17]

    Wu J J, Tang X, Long F, Tang B 2018 Chin. Phys. B 27 057701Google Scholar

    [18]

    Pang X, Yang W, Yang J, Pang M, Zhan Y 2018 Intermetallics 93 329Google Scholar

    [19]

    Brik M G, Ma C-G, Krasnenko V 2013 Surf. Sci. 608 146Google Scholar

    [20]

    Heifets E, Eglitis R I, Kotomin E A, Maier J, Borstel G 2001 Phys. Rev. B 64 235417Google Scholar

    [21]

    Sharma A, Berger R, Lewis D A, Andersson G G 2015 Appl. Surf. Sci. 327 22Google Scholar

    [22]

    Liu J, Zhang X, Chen M, Li L, Zhu B, Tang J, Liu S 2011 Appl. Surf. Sci. 257 4004Google Scholar

    [23]

    Ma H, Chen X-Q, Li R, Wang S, Dong J, Ke W 2017 Acta Mater. 130 137Google Scholar

    [24]

    Cao F, Zheng J, Jiang Y, Chen B, Wang Y, Hu T 2019 Acta Mater. 164 207Google Scholar

    [25]

    Ye Z Y, Liu D X, Yuan M, Zhang X M, Yang Z, Lei M X 2015 Acta Metall. Sin. 28 608Google Scholar

    [26]

    Brewick P T, DeGiorgi V G, Geltmacher A B, Qidwai S M 2019 Corros. Sci. 158 108111Google Scholar

    [27]

    Nicolas A, Mello A W, Sangid M D 2019 Corros. Sci. 154 208Google Scholar

    [28]

    Scott P M, Combrade P 2019 J. Nucl. Mater. 524 340Google Scholar

    [29]

    Li W, Cai M, Wang Y, Yu S 2006 Scr. Mater. 54 921Google Scholar

    [30]

    Kiejna A, Pogosov V V 2000 Phys. Rev. B 62 10445Google Scholar

    [31]

    Kim K, Zhou B-C, Wolverton C 2019 Scr. Mater. 159 99Google Scholar

    [32]

    Murayama M, Hono K 2001 Scr. Mater. 44 701Google Scholar

    [33]

    Huang B P, Zheng Z Q 1998 Acta Mater. 46 4381Google Scholar

    [34]

    Gumbmann E, de Geuser F, Sigli C, Deschamps A 2017 Acta Mater. 133 172Google Scholar

  • 图 1  T1相(001), (100), (010) 3个晶面的切面方向

    Figure 1.  Surface selection of (001), (100), (010) phase.

    图 2  不同面的原子构型

    Figure 2.  The configurations of different surfaces.

    图 3  (a)面I, (b)面F, (c)面H 3个终结面弛豫前后原子构型

    Figure 3.  Atomic configurations of (a) surface I, (b) surface F and (c) surface H before and after relaxation.

    图 4  (a)面A, (b)面C, (c)面E以及(d)面J的电子密度分布

    Figure 4.  Electron density distribution of (a) surface A, (b) surface C, (c) surface E, and (d) surface J.

    图 5  B应变条件下表面能的变化

    Figure 5.  Surface energy of surface B with strain.

    图 6  I应变条件下电子功函数的变化

    Figure 6.  Work function of surface I with strain state.

    图 7  界面模型及其原子替换位置

    Figure 7.  Interface model and atomic substitution positions.

    图 8  Mg, Zn和Ag在Al(111)/T1(010)界面的替位能

    Figure 8.  The substitution energies of Mg, Zn and Ag in Al(111)/T1(010) interface.

    表 1  T1相10个终结面的表面能和电子功函数

    Table 1.  The surface energies and electron work functions of ten surfaces.

    终结面表面能/J·m–2功函数/eV
    AAl-Cu-Li1.243.64
    BCu1.103.91
    CAl-Cu-Li1.203.70
    DAl1.284.27
    EAl-Cu-Li1.023.89
    FAl-Cu-Li1.074.35
    GAl-Cu0.844.29
    HAl-Li0.864.53
    IAl-Cu0.594.12
    JLi0.833.40
    DownLoad: CSV

    表 2  应变条件下表面能和功函数的波动量

    Table 2.  Fluctuation of surface energy and work function with strain.

    表面能变化量/J·m–2功函数变化量/eV
    A0.410.14
    B0.590.09
    C0.250.09
    D0.160.12
    E0.210.14
    F0.310.07
    G0.340.08
    H0.370.05
    I0.370.15
    J0.180.04
    DownLoad: CSV
    Baidu
  • [1]

    程超, 王逊, 孙嘉兴, 曹超铭, 马云莉, 刘艳侠 2018 67 197101Google Scholar

    Cheng C, Wang X, Sun J X, Cao C M, Ma Y L, Liu Y X 2018 Acta Phys. Sin. 67 197101Google Scholar

    [2]

    Jr. E A S, Staley J T 1996 Prog. Aerosp. Sci 32 131Google Scholar

    [3]

    Kim K, Zhou B C, Wolverton C 2018 Acta Mater. 145 337Google Scholar

    [4]

    Rioja R J 1998 Mater Sci Eng, A 257 100Google Scholar

    [5]

    Kim Y S, Park I J, An B S, Park J G, Yang C W, Lee Y H, Kim J G 2020 Mater. Chem. Phys. 241 122275Google Scholar

    [6]

    段永华, 孙勇, 何建洪, 彭明军, 郭中正 2012 61 046101Google Scholar

    Duan Y H, Sun Y, He J H, Peng M J, Guo Z Z 2012 Acta Phys. Sin. 61 046101Google Scholar

    [7]

    Tao Y, Xiong T, Chao S, Kong L, Cui X, Li T, Song G L 2010 Corros. Sci. 52 3191Google Scholar

    [8]

    Wadeson D A, Zhou X, Thompson G E, Skeldon P, Oosterkamp L D, Scamans G 2006 Corros. Sci. 48 887Google Scholar

    [9]

    Vera R, Delgado D, Rosales B M 2006 Corros. Sci. 48 2882Google Scholar

    [10]

    刘贵立 2010 59 2708

    Liu G L 2010 Acta Phys. Sin. 59 2708

    [11]

    Wang X Y, Jang J T, Li G A, Wang X M, Sun J, Zhen L 2020 J. Alloy Compd. 815 152469

    [12]

    Li J F, Zheng Z Q, Li S C, Chen W J, Ren W D, Zhao X S 2007 Corros. Sci. 49 2436Google Scholar

    [13]

    Eifert A J, Thomas J P, Jr R G R 1999 Scr. Mater. 40 929Google Scholar

    [14]

    Zhang X, Zhou X, Hashimoto T, Liu B, Luo C, Sun Z, Tang Z, Lu F, Ma Y 2018 Corros. Sci. 132 1Google Scholar

    [15]

    Buchheit R G, Moran J P, Stoner G E 1994 Corrosion 50 120Google Scholar

    [16]

    王健, 王绍青 2014 物理化学学报 30 551Google Scholar

    Wang J, Wang S Q 2014 Acta Phys-Chim. Sin. 30 551Google Scholar

    [17]

    Wu J J, Tang X, Long F, Tang B 2018 Chin. Phys. B 27 057701Google Scholar

    [18]

    Pang X, Yang W, Yang J, Pang M, Zhan Y 2018 Intermetallics 93 329Google Scholar

    [19]

    Brik M G, Ma C-G, Krasnenko V 2013 Surf. Sci. 608 146Google Scholar

    [20]

    Heifets E, Eglitis R I, Kotomin E A, Maier J, Borstel G 2001 Phys. Rev. B 64 235417Google Scholar

    [21]

    Sharma A, Berger R, Lewis D A, Andersson G G 2015 Appl. Surf. Sci. 327 22Google Scholar

    [22]

    Liu J, Zhang X, Chen M, Li L, Zhu B, Tang J, Liu S 2011 Appl. Surf. Sci. 257 4004Google Scholar

    [23]

    Ma H, Chen X-Q, Li R, Wang S, Dong J, Ke W 2017 Acta Mater. 130 137Google Scholar

    [24]

    Cao F, Zheng J, Jiang Y, Chen B, Wang Y, Hu T 2019 Acta Mater. 164 207Google Scholar

    [25]

    Ye Z Y, Liu D X, Yuan M, Zhang X M, Yang Z, Lei M X 2015 Acta Metall. Sin. 28 608Google Scholar

    [26]

    Brewick P T, DeGiorgi V G, Geltmacher A B, Qidwai S M 2019 Corros. Sci. 158 108111Google Scholar

    [27]

    Nicolas A, Mello A W, Sangid M D 2019 Corros. Sci. 154 208Google Scholar

    [28]

    Scott P M, Combrade P 2019 J. Nucl. Mater. 524 340Google Scholar

    [29]

    Li W, Cai M, Wang Y, Yu S 2006 Scr. Mater. 54 921Google Scholar

    [30]

    Kiejna A, Pogosov V V 2000 Phys. Rev. B 62 10445Google Scholar

    [31]

    Kim K, Zhou B-C, Wolverton C 2019 Scr. Mater. 159 99Google Scholar

    [32]

    Murayama M, Hono K 2001 Scr. Mater. 44 701Google Scholar

    [33]

    Huang B P, Zheng Z Q 1998 Acta Mater. 46 4381Google Scholar

    [34]

    Gumbmann E, de Geuser F, Sigli C, Deschamps A 2017 Acta Mater. 133 172Google Scholar

Metrics
  • Abstract views:  12097
  • PDF Downloads:  220
  • Cited By: 0
Publishing process
  • Received Date:  09 September 2019
  • Accepted Date:  05 November 2019
  • Published Online:  20 January 2020
  • /

    返回文章
    返回
    Baidu
    map