Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Temperature and stress sensing characteristics of symmetrically fused tapered fiber grating

Tu Xing-Hua Zhao Yi-Chao

Citation:

Temperature and stress sensing characteristics of symmetrically fused tapered fiber grating

Tu Xing-Hua, Zhao Yi-Chao
cstr: 32037.14.aps.68.20191034
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The stress-sensitive and temperature-insensitive characteristics of the tapered fiber grating can be used effectively to suppress the cross-sensitive problem of temperature and stress. In this paper, a fiber grating with a symmetric double-cone shape is proposed, which is made by using a fused taper technology. The theoretical model of sensing characteristics is established and analyzed by the transfer matrix method. Firstly, the factors affecting the change of radon coefficient are studied, and the relationship between the radon coefficient and the amount of grate length change is obtained, and then the spectral characteristics of the symmetric fused-tapered fiber grating are analyzed to discuss the origin of dense modulation at the short wavelength of the spectrum. The effects of temperature and stress on the reflection spectrum of symmetrically fused-tapered fiber grating are studied, and the relationship between the corresponding center wavelength and spectral bandwidth is obtained. In order to solve the problem of low stress sensitivity of the fiber grating, a scheme is presented that the radius difference of the optical fiber in the sensing cone region is enhanced by using polymer to coat the tapered area. Finally, a fused taper technology is used to prepare the symmetrically molten fiber grating, and verify the correctness of theoretical simulation in experiment, indicating that its stress sensitivity is 0.11391 nm/N. Firstly, the ripple coefficient of the symmetrically fused-tapered fiber grating is linearly related to the amount of change in the length of the grating. Secondly, because the grating cycle is small at the end of the symmetrically melt-pull-cone fiber-optic grating, and the reflectivity is less than 1, the left-hand transmission light and the right-hand reflected light will produce interference, so the spectral short wavelength will present dense modulation phenomenon. Thirdly, the center wavelength shifts to long wavelength region and the reflection bandwidth is broadened as stress is raised, and the center wavelength and reflection bandwidth are both linearly changed with the applied stress. Finally, the center wavelength shifts to long wavelength region as the temperature rises gradually, and the effect on the spectral bandwidth can be ignored. The stress sensitivity of the fiber grating increases hundreds of times by increasing the difference in fiber optic grating radius in the sensing tapered area, and the stress sensitivity can be further improved by increasing the fused taper variation of the grating. The spectral bandwidth of the symmetrical fused tapered fiber grating is only sensitive to stress but not to temperature. The characteristics can be used to realize the double-parameter measurement of temperature and stress.
      Corresponding author: Tu Xing-Hua, tuxh@njupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11547031) and the Nanjing University of Posts and Telecommunications Research Funds, China (Grant No. NY217111)
    [1]

    芦吉云, 梁大开, 张晓丽, 朱珠 2009 光谱学与光谱分析 29 3429Google Scholar

    Lu G Y, Liang D K, Zhang X L, Zhu Z 2009 Spectrosc. Spectr. Anal. 29 3429Google Scholar

    [2]

    Zhao X W, Wang Q 2019 Instrum. Sci. Technol. 47 140Google Scholar

    [3]

    张敬花, 乔学光, 冯忠耀, 忽满利, 高宏, 周锐, 杨扬 2012 61 054215Google Scholar

    Zhang J H, Qiao X G, Feng Z Y, Hu M L, Gao H, Zhou R, Yang Y 2012 Acta Phys. Sin. 61 054215Google Scholar

    [4]

    赵玲君 2011 硕士学位论文 (无锡: 江南大学)

    Zhao L J 2011 M. S. Thesis (Wuxi: Jiangnan University) (in Chinese)

    [5]

    耿胜各 2017 硕士学位论文 (南京: 南京邮电大学)

    Geng S G 2017 M. S. Thesis (Nanjing: Nanjing University of Posts and Telecommunications) (in Chinese)

    [6]

    Xu M G, Archambault J L, Reekie L, Dakin J P 1994 Electron. Lett. 30 1085Google Scholar

    [7]

    James S W, Dockney M L, Tatam R P 1996 Electron. Lett. 32 1133Google Scholar

    [8]

    孟爱华 2017 硕士学位论文 (长春: 吉林大学)

    Meng A H 2017 M. S. Thesis (Changchun: Jilin University) (in Chinese)

    [9]

    霍文荟 2018 硕士学位论文 (北京: 北京交通大学)

    Huo W H 2018 M. S. Thesis (Beijing: Beijing Jiaotong University) (in Chinese)

    [10]

    尹彬, 柏云龙, 齐艳辉, 冯素春, 简水生 2013 62 214213Google Scholar

    Yin B, Bai Y L, Qi Y H, Feng S C, Jian S S 2013 Acta Phys. Sin. 62 214213Google Scholar

    [11]

    Jiao S X, Zhao Y, Gu J J 2018 Instrum. Sci. Technol. 46 463Google Scholar

    [12]

    Putnam M A, Williams G L M, Friebele E J 1995 Electron. Lett. 31 309Google Scholar

    [13]

    杨先辉, 于永森, 张秋华, 孙圣和 2007 光电子·激光 18 600Google Scholar

    Yang X H, Yu Y S, Zhang Q H, Sun S H 2007 J. Optoe. Laser. 18 600Google Scholar

    [14]

    Qiu S, Chen Y, Kou J 2011 Appl. Opt. 50 4328Google Scholar

    [15]

    Yoon M S, Park S, Han Y G 2012 J. Lightwave Technol. 30 1156Google Scholar

    [16]

    Osuch T 2016 Opt. Commun. 366 194Google Scholar

    [17]

    Zhang B, Kahrizi M 2007 IEEE Sens. J. 7 586Google Scholar

    [18]

    王涛, 何大伟, 王永生, 全雨, 王鹏飞, 尹泽霖 2013 光谱学与光谱分析 33 1411Google Scholar

    Wang T, He D W, Wang Y S, Quan Y, Wang P F, Yin Z L 2013 Spectrosc. Spectr. Anal. 33 1411Google Scholar

    [19]

    刘学静, 杨远洪, 张晓哲, 靳伟 2013 中国激光 40 0505002

    Liu X J, Yang H Y, Zhang X Z, Jin W 2013 Chin. J. Lasers. 40 0505002

    [20]

    Bandyopadhyay S, Canning J, Stevenson M, Cook K 2008 Opt. Lett. 33 1917Google Scholar

    [21]

    Markowski K, Jedrzejewski K, Osuch T 2016 Appl. Opt. 55 4505Google Scholar

    [22]

    Silva S F O, Ferreira L A, Araújo F M, Santos J L, Frazão O 2011 Fiber Integr.Opt. 30 9Google Scholar

    [23]

    Zhuo Z C, Ham B S 2009 Opt. Fiber Technol. 15 442Google Scholar

    [24]

    曹后俊, 司金海, 陈涛, 王瑞泽, 高博, 闫理贺, 侯洵 2018 中国激光 45 0702009

    Cao H J, Si J H, Chen T, Wang R Z, Gao B, Yan L H, Hou X 2018 Chin. J. Lasers. 45 0702009

  • 图 1  普通均匀FBG结构

    Figure 1.  Structure of normal uniform FBG.

    图 2  对称熔融拉锥型光纤光栅结构

    Figure 2.  Structure of symmetric fused-tapered fiber grating.

    图 3  啁啾系数随锥区长度及其变化量分布图

    Figure 3.  Distribution of the chirp coefficient with the length of the cone and its variation.

    图 4  光栅长度变化量1 μm的反射光谱图

    Figure 4.  Reflectance spectra with the grating length variation of 1 μm.

    图 5  中心波长随轴向应力变化分布图

    Figure 5.  Distribution of center wavelength with axial stress.

    图 6  光谱带宽半宽度随轴向应力变化分布图

    Figure 6.  Distribution of half-width of the spectral bandwidth with axial stress

    图 7  光纤光栅在不同温度下的反射谱

    Figure 7.  Reflection spectra of fiber grating at different temperatures.

    图 8  光谱带宽半宽度随温度变化分布图

    Figure 8.  Distribution of spectral bandwidth half-width with temperature

    图 9  对称熔融拉锥型光纤光栅涂覆聚合物后结构图

    Figure 9.  Symmetric fused-tapered fiber grating coated polymer structure.

    图 10  增敏后的光纤光栅在不同应力下的反射谱

    Figure 10.  Reflection spectra of sensitized fiber grating under different stresses

    图 11  光谱带宽半宽度随轴向应力变化分布图

    Figure 11.  Distribution of half-width of the spectral bandwidth with axial stress

    图 12  应力传感实验系统图

    Figure 12.  Stress sensing experimental device.

    图 13  光纤光栅在不同轴向应力下的光谱图

    Figure 13.  Spectral diagram of fiber grating under different axial stresses.

    图 14  光纤光栅在不同温度下的反射谱

    Figure 14.  Reflective spectra of fiber grating at different temperatures.

    图 15  温度与应力对$\lambda _l - \lambda _m$的影响

    Figure 15.  Effects of temperature and stress on$\lambda _l - \lambda _m$.

    Baidu
  • [1]

    芦吉云, 梁大开, 张晓丽, 朱珠 2009 光谱学与光谱分析 29 3429Google Scholar

    Lu G Y, Liang D K, Zhang X L, Zhu Z 2009 Spectrosc. Spectr. Anal. 29 3429Google Scholar

    [2]

    Zhao X W, Wang Q 2019 Instrum. Sci. Technol. 47 140Google Scholar

    [3]

    张敬花, 乔学光, 冯忠耀, 忽满利, 高宏, 周锐, 杨扬 2012 61 054215Google Scholar

    Zhang J H, Qiao X G, Feng Z Y, Hu M L, Gao H, Zhou R, Yang Y 2012 Acta Phys. Sin. 61 054215Google Scholar

    [4]

    赵玲君 2011 硕士学位论文 (无锡: 江南大学)

    Zhao L J 2011 M. S. Thesis (Wuxi: Jiangnan University) (in Chinese)

    [5]

    耿胜各 2017 硕士学位论文 (南京: 南京邮电大学)

    Geng S G 2017 M. S. Thesis (Nanjing: Nanjing University of Posts and Telecommunications) (in Chinese)

    [6]

    Xu M G, Archambault J L, Reekie L, Dakin J P 1994 Electron. Lett. 30 1085Google Scholar

    [7]

    James S W, Dockney M L, Tatam R P 1996 Electron. Lett. 32 1133Google Scholar

    [8]

    孟爱华 2017 硕士学位论文 (长春: 吉林大学)

    Meng A H 2017 M. S. Thesis (Changchun: Jilin University) (in Chinese)

    [9]

    霍文荟 2018 硕士学位论文 (北京: 北京交通大学)

    Huo W H 2018 M. S. Thesis (Beijing: Beijing Jiaotong University) (in Chinese)

    [10]

    尹彬, 柏云龙, 齐艳辉, 冯素春, 简水生 2013 62 214213Google Scholar

    Yin B, Bai Y L, Qi Y H, Feng S C, Jian S S 2013 Acta Phys. Sin. 62 214213Google Scholar

    [11]

    Jiao S X, Zhao Y, Gu J J 2018 Instrum. Sci. Technol. 46 463Google Scholar

    [12]

    Putnam M A, Williams G L M, Friebele E J 1995 Electron. Lett. 31 309Google Scholar

    [13]

    杨先辉, 于永森, 张秋华, 孙圣和 2007 光电子·激光 18 600Google Scholar

    Yang X H, Yu Y S, Zhang Q H, Sun S H 2007 J. Optoe. Laser. 18 600Google Scholar

    [14]

    Qiu S, Chen Y, Kou J 2011 Appl. Opt. 50 4328Google Scholar

    [15]

    Yoon M S, Park S, Han Y G 2012 J. Lightwave Technol. 30 1156Google Scholar

    [16]

    Osuch T 2016 Opt. Commun. 366 194Google Scholar

    [17]

    Zhang B, Kahrizi M 2007 IEEE Sens. J. 7 586Google Scholar

    [18]

    王涛, 何大伟, 王永生, 全雨, 王鹏飞, 尹泽霖 2013 光谱学与光谱分析 33 1411Google Scholar

    Wang T, He D W, Wang Y S, Quan Y, Wang P F, Yin Z L 2013 Spectrosc. Spectr. Anal. 33 1411Google Scholar

    [19]

    刘学静, 杨远洪, 张晓哲, 靳伟 2013 中国激光 40 0505002

    Liu X J, Yang H Y, Zhang X Z, Jin W 2013 Chin. J. Lasers. 40 0505002

    [20]

    Bandyopadhyay S, Canning J, Stevenson M, Cook K 2008 Opt. Lett. 33 1917Google Scholar

    [21]

    Markowski K, Jedrzejewski K, Osuch T 2016 Appl. Opt. 55 4505Google Scholar

    [22]

    Silva S F O, Ferreira L A, Araújo F M, Santos J L, Frazão O 2011 Fiber Integr.Opt. 30 9Google Scholar

    [23]

    Zhuo Z C, Ham B S 2009 Opt. Fiber Technol. 15 442Google Scholar

    [24]

    曹后俊, 司金海, 陈涛, 王瑞泽, 高博, 闫理贺, 侯洵 2018 中国激光 45 0702009

    Cao H J, Si J H, Chen T, Wang R Z, Gao B, Yan L H, Hou X 2018 Chin. J. Lasers. 45 0702009

Metrics
  • Abstract views:  10577
  • PDF Downloads:  123
  • Cited By: 0
Publishing process
  • Received Date:  06 July 2019
  • Accepted Date:  27 September 2019
  • Available Online:  27 November 2019
  • Published Online:  01 December 2019
  • /

    返回文章
    返回
    Baidu
    map