Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Master oscillator pulse nonlinear amplifier system based on all polarization-maintaining fiber

Zhang Tong Zhang Wei-Guang Cai Ya-Jun Hu Xiao-Hong Feng Ye Wang Yi-Shan Yu Jia

Citation:

Master oscillator pulse nonlinear amplifier system based on all polarization-maintaining fiber

Zhang Tong, Zhang Wei-Guang, Cai Ya-Jun, Hu Xiao-Hong, Feng Ye, Wang Yi-Shan, Yu Jia
cstr: 32037.14.aps.68.20190925
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The erbium-doped fiber oscillators, especially mode-locked fiber oscillators for generating femtosecond pulses, cannot meet the requirements for most of modern industrial applications because they are resticted by the low power and the limited wavelength range. In order to solve this problem, lots of efforts have been made both theoretically and experimentally, to improve the chirped pulse amplification (CPA) technology. The emergence of CPA technology greatly enhances the energy of laser pulses. The broadening and compressing of the laser pulses are both always dependent on the improving of spatial optical components, such as grating pairs. However, the use of this kind of method can increase the complexity of the amplification system to a certain extent. This may be an essential reason why more and more researchers pay attention to all fiber amplification system. In this paper, the master oscillator pulse nonlinear amplifier system based on all polarization- maintaining fiber is proposed, which is mainly composed of an oscillator based on the semiconductor saturable absorption mirror and linear cavity, a two-stage amplification and a pulse compressor constructed by a single-mode conductive fiber with anomalous dispersion. Using this system, we obtain ultrashort laser pulses in the 1.5 nm band whose pulse width equals 44 fs and single pulse energy reaches about 1 nJ. The system is not only compact and miniaturized but also stable and reliable due to the all polarization-maintaining fiber. Subsequently, an MgO doped periodically poled lithium niobite crystal with a thickness of 1 mm is used to implement frequency doubling. The pulses from the system are accurately focused on a position where the crystal polarization period is 19.8 μm with help of some wave plates and lenses. Adjusting the optical path reasonably and optimizing colliminated focusing parameters, the double-frequency pulse output with certral wavelength of 779 nm and average power of 60 W is obtained, in which the conversion efficiency reaches 30%. The result shows that the master oscillator pulse nonlinear amplifier system based on all polarization maintaining fiber can produce satisfactory ultrashort pulses. It is a new idea for generating the ultrashort femtosecond pulses in the near-infrared band.
      Corresponding author: Yu Jia, wizardyujia@163.com
    • Funds: Project supported by the National Key R & D Program of China (Grant No. 2016YFF0200700), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61701385), the Open Research Fund of Shaanxi Key Laboratory of Photoelectricity Measurement and Instrument Technology, China (Grant No. 2016SZSJ-60-2), the Open Research Fund of State Key Laboratory of Transient Optics and Photonics, China (Grant No. SKLST201709), and the CAS/SAFEA international Partnership Program for Creative Research Teams, China
    [1]

    付思 2013 硕士学位论文 (北京: 北京交通大学)

    Fu S 2013 M. S. Thesis (Beijing: Beijing Jiaotong University) (in Chinese)

    [2]

    Jazayerifar M, Warm S, Elschner R, Kroushkov D, Sackey I, Meuer C, Schubert C, Petermann K 2013 J. Lightwave Technol. 31 1454Google Scholar

    [3]

    Sinclair L C, Deschênes J D, Sonderhouse L, Swann W C, Khader I H, Baumann E, Newbury N R, Coddington I 2015 Rev. Sci. Instrum 86 081301Google Scholar

    [4]

    Meng F, Cao S Y, Zhao G Z, Zhao Y, Fang Z J 2015 Chin. J. Las. 42 0702012

    [5]

    景磊, 姚建铨, 陆颖, 黄晓慧 2012 天津大学学报 45 95

    Jing L, Yao J Q, Lu Y, Huang X H 2012 J. Tianjin Univ. 45 95

    [6]

    Li M, Liu K, Jing W C, Peng G D 2010 J. Opt. Soc. Korea 14 14Google Scholar

    [7]

    王强, 许可, 姚晨雨, 王震, 常军, 任伟 2018 中国激光 45 106

    Wang Q, Xu K, Yao C Y, Wang Z, Chang J, Ren W 2018 Chin. J. Las. 45 106

    [8]

    李彦, 黎珂钦, 金靖 2017 中国激光 44 253

    Li Y, Li K Q, Jin J 2017 Chin. J. Las. 44 253

    [9]

    Kang J Q, Kong C H, Feng P P, Li C, Luo Z C, Edmund Y L, Kevin K T, Kenneth K Y W 2018 Conference on Lasers and Electro-Optics San Jose, California, United State, May 13−18, 2018 pSW4J.5

    [10]

    Huang L, Zhou X, Tang S 2018 J. Biomed. Opt. 23 1

    [11]

    刘观辉, 裴丽, 宁提纲, 高篙, 李晶, 张义军 2012 61 094205Google Scholar

    Liu G H, Pei L, Ning T G, Gao S, Li J, Zhang Y J 2012 Acta Phys. Sin. 61 094205Google Scholar

    [12]

    刘欢, 巩马理, 曹士英, 林百科, 方占军 2015 64 114210Google Scholar

    Liu H, Gong M L, Cao S Y, Lin B K, Fang Z J 2015 Acta Phys. Sin. 64 114210Google Scholar

    [13]

    Eidam T, Hanf S, Seise E, Andersen T V, Gabler T, Wirth C, Schreiber T, Limpert J, Tünnermann A 2010 Opt. Lett. 35 94Google Scholar

    [14]

    Eidam T, Rothhardt J, Stutzki F, Jansen F, Hädrich S, Carstens H, Jauregui C, Limpert J, Tünnermann A 2011 Opt. Express 19 255Google Scholar

    [15]

    Sobon G, Kaczmarek P R, Sliwinska D, Sotor J, Abramski K M 2014 IEEE J. Sel. Top. Quantum Electron. 20 492Google Scholar

    [16]

    李浪, 刘洋, 王超, 潘海峰 2016 激光技术 40 307Google Scholar

    Li L, Liu Y, Wang C, Pan H F 2016 Laser Technol. 40 307Google Scholar

    [17]

    Ou S M, Liu G Y, Lei H, Zhang Z G, Zhang Q M 2017 Chin. Phys. Lett. 34 074207Google Scholar

    [18]

    Sun J, Zhou Y, Dai Y T, Li J Q, Yin F F, Dai J, Xu K 2018 Appl. Opt. 57 1492Google Scholar

    [19]

    延凤平, 毛向桥, 王琳, 傅永军, 魏淮, 郑凯, 龚桃荣, 刘鹏, 陶沛琳, 简水生 2009 58 6296Google Scholar

    Yan F P, Mao X Q, Wang L, Fu Y J, Wei H, Zheng K, Gong T R, Liu P, Tao P L, Jian S S 2009 Acta Phys. Sin. 58 6296Google Scholar

    [20]

    Lü Z G, Yang Z, Li F, Yang X J, Tang X J, Yang Y, Li Q L, Wang Y S, Zhao W 2018 Laser Phys. 28 125103Google Scholar

    [21]

    Fermann M, Kruglov V I, Thomsen B C, Dudley J M, Harvey J D 2000 Phys. Rev. Lett. 84 6010Google Scholar

    [22]

    BoyD G D, Kleinman D A 1968 J. Appl. Phys. 39 3597Google Scholar

  • 图 1  全保偏光纤MOPNA系统结构示意图 (a)振荡级; (b)放大级; (c)压缩级

    Figure 1.  Schematic diagram of MOPNA system based on all polarization maintaining fiber: (a) Oscillator; (b) amplifier; (c) compressor.

    图 2  倍频光路结构示意图

    Figure 2.  Experimental setup for frequency doubling.

    图 3  振荡器输出锁模脉冲特性 (a)光谱; (b)自相关曲线; (c)脉冲序列

    Figure 3.  The oscillator output: (a) Spectrum curve; (b) autocorrelation curve; (c) pulse sequence.

    图 4  预放大级不同抽运功率下的光谱变化

    Figure 4.  Variation of the spectrum profiles under different pump powers of the pre-amplifier.

    图 5  预放大级输出功率与抽运功率的变化关系

    Figure 5.  The relationship between output power and pump power of the pre-amplifier.

    图 6  预放大级抽运功率为50 mW时对应的脉冲自相关曲线

    Figure 6.  The autocorrelation curve of pre-amplified pulse corresponding to pump power of 50 mW.

    图 7  主放大级输出功率与抽运功率的变化关系

    Figure 7.  The relationship between output power and pump power of the main amplifier.

    图 8  主放大级输出光谱

    Figure 8.  The spectrum output from the main amplifier.

    图 9  不同输出功率下的最短脉宽及其对应的压缩光纤长度

    Figure 9.  The pulse widths versus output powers and the lengths of compression fiber.

    图 10  压缩级输出脉冲特性 (a)光谱; (b)自相关曲线

    Figure 10.  The optical spectrum: (a) Autocorrelation curve; (b) recompressed pulses.

    图 11  二次谐波的光谱

    Figure 11.  The spectrum of second harmonic.

    Baidu
  • [1]

    付思 2013 硕士学位论文 (北京: 北京交通大学)

    Fu S 2013 M. S. Thesis (Beijing: Beijing Jiaotong University) (in Chinese)

    [2]

    Jazayerifar M, Warm S, Elschner R, Kroushkov D, Sackey I, Meuer C, Schubert C, Petermann K 2013 J. Lightwave Technol. 31 1454Google Scholar

    [3]

    Sinclair L C, Deschênes J D, Sonderhouse L, Swann W C, Khader I H, Baumann E, Newbury N R, Coddington I 2015 Rev. Sci. Instrum 86 081301Google Scholar

    [4]

    Meng F, Cao S Y, Zhao G Z, Zhao Y, Fang Z J 2015 Chin. J. Las. 42 0702012

    [5]

    景磊, 姚建铨, 陆颖, 黄晓慧 2012 天津大学学报 45 95

    Jing L, Yao J Q, Lu Y, Huang X H 2012 J. Tianjin Univ. 45 95

    [6]

    Li M, Liu K, Jing W C, Peng G D 2010 J. Opt. Soc. Korea 14 14Google Scholar

    [7]

    王强, 许可, 姚晨雨, 王震, 常军, 任伟 2018 中国激光 45 106

    Wang Q, Xu K, Yao C Y, Wang Z, Chang J, Ren W 2018 Chin. J. Las. 45 106

    [8]

    李彦, 黎珂钦, 金靖 2017 中国激光 44 253

    Li Y, Li K Q, Jin J 2017 Chin. J. Las. 44 253

    [9]

    Kang J Q, Kong C H, Feng P P, Li C, Luo Z C, Edmund Y L, Kevin K T, Kenneth K Y W 2018 Conference on Lasers and Electro-Optics San Jose, California, United State, May 13−18, 2018 pSW4J.5

    [10]

    Huang L, Zhou X, Tang S 2018 J. Biomed. Opt. 23 1

    [11]

    刘观辉, 裴丽, 宁提纲, 高篙, 李晶, 张义军 2012 61 094205Google Scholar

    Liu G H, Pei L, Ning T G, Gao S, Li J, Zhang Y J 2012 Acta Phys. Sin. 61 094205Google Scholar

    [12]

    刘欢, 巩马理, 曹士英, 林百科, 方占军 2015 64 114210Google Scholar

    Liu H, Gong M L, Cao S Y, Lin B K, Fang Z J 2015 Acta Phys. Sin. 64 114210Google Scholar

    [13]

    Eidam T, Hanf S, Seise E, Andersen T V, Gabler T, Wirth C, Schreiber T, Limpert J, Tünnermann A 2010 Opt. Lett. 35 94Google Scholar

    [14]

    Eidam T, Rothhardt J, Stutzki F, Jansen F, Hädrich S, Carstens H, Jauregui C, Limpert J, Tünnermann A 2011 Opt. Express 19 255Google Scholar

    [15]

    Sobon G, Kaczmarek P R, Sliwinska D, Sotor J, Abramski K M 2014 IEEE J. Sel. Top. Quantum Electron. 20 492Google Scholar

    [16]

    李浪, 刘洋, 王超, 潘海峰 2016 激光技术 40 307Google Scholar

    Li L, Liu Y, Wang C, Pan H F 2016 Laser Technol. 40 307Google Scholar

    [17]

    Ou S M, Liu G Y, Lei H, Zhang Z G, Zhang Q M 2017 Chin. Phys. Lett. 34 074207Google Scholar

    [18]

    Sun J, Zhou Y, Dai Y T, Li J Q, Yin F F, Dai J, Xu K 2018 Appl. Opt. 57 1492Google Scholar

    [19]

    延凤平, 毛向桥, 王琳, 傅永军, 魏淮, 郑凯, 龚桃荣, 刘鹏, 陶沛琳, 简水生 2009 58 6296Google Scholar

    Yan F P, Mao X Q, Wang L, Fu Y J, Wei H, Zheng K, Gong T R, Liu P, Tao P L, Jian S S 2009 Acta Phys. Sin. 58 6296Google Scholar

    [20]

    Lü Z G, Yang Z, Li F, Yang X J, Tang X J, Yang Y, Li Q L, Wang Y S, Zhao W 2018 Laser Phys. 28 125103Google Scholar

    [21]

    Fermann M, Kruglov V I, Thomsen B C, Dudley J M, Harvey J D 2000 Phys. Rev. Lett. 84 6010Google Scholar

    [22]

    BoyD G D, Kleinman D A 1968 J. Appl. Phys. 39 3597Google Scholar

Metrics
  • Abstract views:  12393
  • PDF Downloads:  133
  • Cited By: 0
Publishing process
  • Received Date:  15 June 2019
  • Accepted Date:  29 August 2019
  • Available Online:  27 November 2019
  • Published Online:  05 December 2019
  • /

    返回文章
    返回
    Baidu
    map