Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Electro-static discharge protection analysis and design optimization of interlayer Cu interconnection in InGaZnO thin film transistor backplane

Ma Qun-Gang Wang Hai-Hong Zhang Sheng-Dong Chen Xu Wang Ting-Ting

Citation:

Electro-static discharge protection analysis and design optimization of interlayer Cu interconnection in InGaZnO thin film transistor backplane

Ma Qun-Gang, Wang Hai-Hong, Zhang Sheng-Dong, Chen Xu, Wang Ting-Ting
cstr: 32037.14.aps.68.20190646
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The InGaZnO thin film transistor (IGZO TFT) backplane combined with Cu interconnection has nearly an order of magnitude lower in the ability to withstand voltage than that of traditional a-Si TFT backplane on the production line. The breakdown voltage of Mo/Cu interconnection between data line and gate line is only about 60% of that of traditional a-Si TFT backplane. The electrostatic discharge (ESD) breakdown of Mo/Cu:SiNx/SiO2:Mo/Cu structure has become an important factor affecting the normal display of IGZO TFT ultra high definition (UHD) panel. We find that the anti-ESD damage ability of IGZO TFT devices needs matching with the anti-ESD damage ability of interlayer Cu interconnection in order to achieve a high-robustness IGZO TFT backplane. The position of ESD damage in IGZO TFT backplane is commonly in the climbing place where the data line crosses the scanning line. In this paper, a Cu diffusion model is proposed to explain the mechanism for the ESD failure of interlayer Cu interconnection. The Cu metal in gate line diffuses into SiNx/SiO2 gate insulator, and Cu metal at the corner of data line, where the date line crosses the gate line, diffuses into SiO2 film on the date line. The selection conditions of three kinds of protection architectures for ESD protection circuits around Cu interconnection, i.e. R-type, R-half-type, and Diode-type protection architectures, are proposed. On the basis of process optimization such as Cu metal film forming and Cu metal interface treatment, an ESD protection method for the Cu interconnection periphery of IGZO TFT backplane with high robustness is proposed. For the stable production process of IGZO TFT, combined with the design window of ESD protection circuit, the peripheral ESD protection circuit of Cu interconnect is designed with diode-type protection circuit on the IGZO TFT backplane of large-sized UHD and QUHD panel, which effectively improves the effect of interlayer Cu interconnection of IGZO TFT backplane on ESD damage. Through the production verification, it is proved that the metal diffusion of Cu interconnection on IGZO TFT backplane is the fundamental reason for reducing the anti-ESD damage ability of Mo/Cu:SiNx/SiO2:Mo/Cu structure. The rationality of the proposed ESD damage model for interlayer Cu interconnection is verified, which provides a theoretical basis for subsequent IGZO TFT backplane design with high robustness.
      Corresponding author: Zhang Sheng-Dong, zhangsd@pku.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61574003, 61774010) and the Municipal Scientific Program of Shenzhen, China (Grant Nos. GGFW20170728163447038, JCYJ20180504165449640).
    [1]

    兰林锋, 张鹏, 彭俊彪 2016 65 128504Google Scholar

    Lan L F, Zhang P, Peng J B 2016 Acta Phys. Sin. 65 128504Google Scholar

    [2]

    Choi J H, Yang J H, Pi J E, Hwang C Y, Choi K, Kim H O, Kwon O S, Hwang C S 2017 IEEE Electron Dev. Lett. 38 1398Google Scholar

    [3]

    Sang H L, Dong J O, Hwang A Y, Dong S H, Shin K, Jae K J, Jong W P 2015 IEEE Electron Dev. Lett. 36 802Google Scholar

    [4]

    Nam W J, Shim J S, Shin H J, Kim J M, Ha W S, Park K H, Kim H G, Kim B S, Oh C H, Ahn B C, Kim B C, Cha S Y 2013 Sid Symposium Digest Technical Papers 44 243

    [5]

    Lee C K, In D Y, Oh D J, Lee S H, Lee J W, Jeong J K 2018 IEEE Trans. Electron Dev. 65 1383Google Scholar

    [6]

    Jeong J, Jun Lee G, Kim J, Choi B 2012 Appl. Phys. Lett. 100 112109Google Scholar

    [7]

    Lee K W, Wang H, Bea J C, Murugesan M 2014 IEEE Electron Dev. Lett. 35 114Google Scholar

    [8]

    马群刚, 周刘飞, 喻玥, 马国永, 张盛东 2019 68 108501Google Scholar

    Ma Q G, Zhou L F, Yu Y, Ma G Y, Zhang S D 2019 Acta Phys. Sin. 68 108501Google Scholar

    [9]

    Liu X, Wang L L, Ning C, Hu H H, Yang W, Wang K, Yoo S Y, Zhang S D 2014 IEEE Trans. Electron Dev. 61 4299Google Scholar

    [10]

    Ji K H, Kim J I, Jung H Y, Park S Y, Mo Y G, Jeong J K 2011 18th IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA), Incheon, South Korea, July 4−7 2011, p12190972

    [11]

    Simicic M, Hellings G, Chen S H, Myny K, Linten D 2018 40th Electrical Overstress/Electrostatic Discharge Symposium (EOS/ESD) Reno, NV, USA, September 23−28, 2018 p1

    [12]

    Tai Y H, Chiu H L, Chou L S 2013 J. Disp. Technol. 9 613Google Scholar

    [13]

    Liu Y, Chen R, Li B, En Y F, Chen Y Q 2017 IEEE Trans. Electron Dev. 65 356Google Scholar

    [14]

    Scholz M, Steudel S, Myny K, Chen S, Boschke R, Hellings G, Linten D 2016 EOS/ESD Symp. Garden Grove, September 11−16, 2016 pp1−7

    [15]

    Kim L Y, Kwon O K 2018 IEEE Electron Dev. Lett. 39 43Google Scholar

    [16]

    Cao L, Ganesh K J, Zhang L, Aubel O, Hennesthal C, Hauschildt M, Ferreira P J, Ho P S 2013 Appl. Phys. Lett. 102 131907

    [17]

    Hu C K, Gignac L M, Lian G, et al. 2018 IEEE International Electron Devices Meeting (IEDM) San Francisco, December 1−5, 2018 p18420793

    [18]

    Chiang H C, Chang T C, Liao P Y, Chen B W, Tsao Y C, Tsai T M, Chien Y C, Yang Y C, Chen K F, Yang C I, Hung Y J, Chang K C, Zhang S D, Lin S C, Yeh C Y 2017 Appl. Phys. Lett. 111 133504Google Scholar

    [19]

    Thermadam S P, Bhagat S K, Alford T L, Sakaguchi Y, Kozicki M N, Mitkova M 2010 Thin Solid Films 518 3293Google Scholar

    [20]

    邓小庆, 邓联文, 何伊妮, 廖聪维, 黄生祥, 罗衡 2019 68 057302Google Scholar

    Deng X Q, Deng L W, He Y N, Liao C W, Huang S X, Luo H 2019 Acta Phys. Sin. 68 057302Google Scholar

    [21]

    Chen W, Barnaby H J, Kozicki M N 2016 IEEE Electron Dev. Lett. 37 580Google Scholar

    [22]

    Choi Z S, Mönig R, Thompson C V 2007 J. Appl. Phys. 102 083509

  • 图 1  像素点Cu互连电流密度的ANSYS仿真 (a) 二维仿真模型; (b) 二维仿真结果

    Figure 1.  ANSYS simulation of current density of Cu interconnect in a pixel: (a) Two-dimensional simulation model; (b) two-dimensional simulation results.

    图 2  Cu扩散引起层间绝缘层有效厚度下降的机理

    Figure 2.  Mechanism of Cu diffusion induced decrease in effective thickness of insulation layer.

    图 3  数据线与扫描线层间Cu互连的ESD破坏现象

    Figure 3.  ESD damage of interlayer Cu interconnects between data line and gate line.

    图 4  三种ESD保护架构的版图

    Figure 4.  Layout of three ESD protection architectures.

    图 5  三种类型ESD保护电路的I-V曲线 (a) W = 5 μm, R型; (b) W = 4 μm, R型; (c) W = 5 μm, R half型; (d) W = 4 μm, R half型; (e) W = 5 μm, Diode型; (f) W = 4 μm, Diode型

    Figure 5.  Layout of three ESD protection architectures: (a) R-type I-V curves at W = 5 μm; (b) R-type I-V curves at W = 4 μm; (c) R half-type I-V curves at W = 5 μm; (d) R half-type I-V curves at W = 4 μm; (e) Diode-type I-V curves at W = 5 μm; (f) Diode-type I-V curves at W = 4 μm.

    图 6  数据线与扫描线层间结构比较

    Figure 6.  Structural comparison between data line and scanning line.

    图 7  ESD保护电路设计窗口

    Figure 7.  Design window of ESD protection circuit.

    图 8  不同生产工艺下的IGZO TFT的Ids-Vgs曲线

    Figure 8.  Ids-Vgs curves of IGZO TFT devices with different production technologies.

    图 9  不同生产工艺条件下的Diode型ESD电压扫描结果 (a) 第一种生产工艺条件; (b) 第二种生产工艺条件

    Figure 9.  Voltage scanning results of Diode ESD protection circuit under different production technologies: (a) The first production process conditions; (b) the second production process conditions.

    图 10  数据线之间的Diode型ESD保护电路 (a) 版图; (b) 原理图

    Figure 10.  Diode-type ESD protection circuit between data lines: (a) Layout; (b) schematic diagram.

    表 1  仿真模型中不同材料的属性参数

    Table 1.  Attribute parameters of different materials in simulation model.

    材料 弹性模量/Pa 泊松比 热导率/W·mK–1 热膨胀系数/ppm·K–1 电阻率/Ω·m 质量密度/kg·m–3
    SiO2 69 × 109 0.17 7.6 0.54 × 10–6 2200
    Cu 119 × 109 0.326 398 17.5 × 10–6 1.7 × 10–8 8900
    DownLoad: CSV
    Baidu
  • [1]

    兰林锋, 张鹏, 彭俊彪 2016 65 128504Google Scholar

    Lan L F, Zhang P, Peng J B 2016 Acta Phys. Sin. 65 128504Google Scholar

    [2]

    Choi J H, Yang J H, Pi J E, Hwang C Y, Choi K, Kim H O, Kwon O S, Hwang C S 2017 IEEE Electron Dev. Lett. 38 1398Google Scholar

    [3]

    Sang H L, Dong J O, Hwang A Y, Dong S H, Shin K, Jae K J, Jong W P 2015 IEEE Electron Dev. Lett. 36 802Google Scholar

    [4]

    Nam W J, Shim J S, Shin H J, Kim J M, Ha W S, Park K H, Kim H G, Kim B S, Oh C H, Ahn B C, Kim B C, Cha S Y 2013 Sid Symposium Digest Technical Papers 44 243

    [5]

    Lee C K, In D Y, Oh D J, Lee S H, Lee J W, Jeong J K 2018 IEEE Trans. Electron Dev. 65 1383Google Scholar

    [6]

    Jeong J, Jun Lee G, Kim J, Choi B 2012 Appl. Phys. Lett. 100 112109Google Scholar

    [7]

    Lee K W, Wang H, Bea J C, Murugesan M 2014 IEEE Electron Dev. Lett. 35 114Google Scholar

    [8]

    马群刚, 周刘飞, 喻玥, 马国永, 张盛东 2019 68 108501Google Scholar

    Ma Q G, Zhou L F, Yu Y, Ma G Y, Zhang S D 2019 Acta Phys. Sin. 68 108501Google Scholar

    [9]

    Liu X, Wang L L, Ning C, Hu H H, Yang W, Wang K, Yoo S Y, Zhang S D 2014 IEEE Trans. Electron Dev. 61 4299Google Scholar

    [10]

    Ji K H, Kim J I, Jung H Y, Park S Y, Mo Y G, Jeong J K 2011 18th IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA), Incheon, South Korea, July 4−7 2011, p12190972

    [11]

    Simicic M, Hellings G, Chen S H, Myny K, Linten D 2018 40th Electrical Overstress/Electrostatic Discharge Symposium (EOS/ESD) Reno, NV, USA, September 23−28, 2018 p1

    [12]

    Tai Y H, Chiu H L, Chou L S 2013 J. Disp. Technol. 9 613Google Scholar

    [13]

    Liu Y, Chen R, Li B, En Y F, Chen Y Q 2017 IEEE Trans. Electron Dev. 65 356Google Scholar

    [14]

    Scholz M, Steudel S, Myny K, Chen S, Boschke R, Hellings G, Linten D 2016 EOS/ESD Symp. Garden Grove, September 11−16, 2016 pp1−7

    [15]

    Kim L Y, Kwon O K 2018 IEEE Electron Dev. Lett. 39 43Google Scholar

    [16]

    Cao L, Ganesh K J, Zhang L, Aubel O, Hennesthal C, Hauschildt M, Ferreira P J, Ho P S 2013 Appl. Phys. Lett. 102 131907

    [17]

    Hu C K, Gignac L M, Lian G, et al. 2018 IEEE International Electron Devices Meeting (IEDM) San Francisco, December 1−5, 2018 p18420793

    [18]

    Chiang H C, Chang T C, Liao P Y, Chen B W, Tsao Y C, Tsai T M, Chien Y C, Yang Y C, Chen K F, Yang C I, Hung Y J, Chang K C, Zhang S D, Lin S C, Yeh C Y 2017 Appl. Phys. Lett. 111 133504Google Scholar

    [19]

    Thermadam S P, Bhagat S K, Alford T L, Sakaguchi Y, Kozicki M N, Mitkova M 2010 Thin Solid Films 518 3293Google Scholar

    [20]

    邓小庆, 邓联文, 何伊妮, 廖聪维, 黄生祥, 罗衡 2019 68 057302Google Scholar

    Deng X Q, Deng L W, He Y N, Liao C W, Huang S X, Luo H 2019 Acta Phys. Sin. 68 057302Google Scholar

    [21]

    Chen W, Barnaby H J, Kozicki M N 2016 IEEE Electron Dev. Lett. 37 580Google Scholar

    [22]

    Choi Z S, Mönig R, Thompson C V 2007 J. Appl. Phys. 102 083509

Metrics
  • Abstract views:  12822
  • PDF Downloads:  175
  • Cited By: 0
Publishing process
  • Received Date:  29 April 2019
  • Accepted Date:  15 May 2019
  • Available Online:  01 August 2019
  • Published Online:  05 August 2019
  • /

    返回文章
    返回
    Baidu
    map