Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical analysis of entanglement enhancement with two cascaded optical cavities

Zhou Yao-Yao Tian Jian-Feng Yan Zhi-Hui Jia Xiao-Jun

Citation:

Theoretical analysis of entanglement enhancement with two cascaded optical cavities

Zhou Yao-Yao, Tian Jian-Feng, Yan Zhi-Hui, Jia Xiao-Jun
cstr: 32037.14.aps.68.20182079
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Entanglement source with high entanglement degree is the guarantee for accomplishing the quantum information transmission and process with higher fidelity. Continuous variable Einstein-Podolsky-Rosen (EPR) entangled optical field with quantum correlation of amplitude and phase quadrature is a basic and important quantum resource in the quantum information science area, which can be obtained by a non-degenerate optical parametric amplifier (NOPA) operated below the threshold pump power. Because of the limitation of the imperfect performance of optical components in optical cavity, we should find efficient methods of implementing quantum manipulation to improve the entanglement degree of the entangled state of light. Connecting NOPA1 and NOPA2 in series, the entangled state of light output from the NOPA1 can be manipulated by NOPA2, and the entanglement degree can be enhanced under certain conditions. To improve the entanglement degree to a greater extent, the structure of the NOPA1 is chosen as a half-monolithic standing-wave optical resonator with the triple resonance of the pump and two subharmonic modes. The NOPA1 is able to output the entangled optical fields with an entanglement degree of 8.4 dB, which is the highest entanglement generated by a single device so far. The structure of the NOPA2 can be chosen as a standing-wave optical cavity or a four-mirror ring optical cavity. According to the different structures of the NOPA2, we theoretically design two kinds of optical systems with two cascaded cavities and compare the effects of the two optical systems on the continuous variable EPR entanglement cascaded enhancement in detail. Based on the above contrastive analysis, when the entanglement degree of the input optical fields is 8.4 dB and the transmissivity of the output coupler is lower, the structure of a four-mirror ring optical cavity for NOPA2 cannot enhance the entanglement degree, so the optical system including NOPA2 with standing wave cavity structure and the optical isolator with high transmission efficiency is appropriate. When the transmissivity of the output coupler and transmission efficiency of the optical isolator are higher, the structure of the NOPA2 should be chosen as a standing-wave optical cavity, otherwise the structure of the NOPA2 should be chosen as a four-mirror ring optical cavity. We also theoretically analyze the dependence of the correlation degree of output optical fields on physical parameters. The results show that under the conditions of higher input and output coupling efficiency, higher transmission efficiency and lower intro-cavity loss, the entangled state of light with higher entanglement degree can be obtained experimentally. This provides the reference for obtaining entangled optical fields with higher entanglement degree in the future.
      Corresponding author: Zhou Yao-Yao, zhouyaoyaofangxia@163.com
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2016YFA0301402), the National Natural Science Foundation of China (Grant Nos. 11804246, 61775127, 11474190, 11654002), the Program for Sanjin Scholars of Shanxi Province, China, the Shanxi Scholarship Council of China, the Fund for Shanxi “1331 Project” Key Subjects Construction, China, and the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi, China.
    [1]

    Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H, Zeilinger A 1997 Nature 390 575Google Scholar

    [2]

    Furusawa A, Sorensen J L, Braustein S L, Fuchs C A, Kimble H J, Polzik E S 1998 Science 282 706Google Scholar

    [3]

    Boschi D, Branca S, Marini F D, Hardy L, Popescu S 1998 Phys. Rev. Lett. 80 1121Google Scholar

    [4]

    Vaidman L 1994 Phys. Rev. A 49 1473Google Scholar

    [5]

    Braunstein S L, Kimble H J 1998 Phys. Rev. Lett. 80 869Google Scholar

    [6]

    Bowen W P, Schnabel R, Lam P K, Ralph T C 2004 Phys. Rev. A 69 012304Google Scholar

    [7]

    Eberle T, Händchen V, Duhme J, Franz T, Werner R F, Schnabel R 2011 Phys. Rev. A 83 052329Google Scholar

    [8]

    Mizuno J, Wakui K, Furusawa A, Sasaki M 2005 Phys. Rev. A 71 012304Google Scholar

    [9]

    Stoler D 1970 Phys. Rev. D 1 3217Google Scholar

    [10]

    Mehmet M, Vahlbruch H, Lastzka N, Danzmann K, Schnabel R 2010 Phys. Rev. A 81 013814Google Scholar

    [11]

    Mehmet M, Ast S, Eberle T, Steinlechner S, Vahlbruch H, Schnabel R 2011 Opt. Express 19 25763Google Scholar

    [12]

    Eberle T, Steinlechner S, Bauchrowitz J, Händchen V, Vahlbruch H, Mehmet M, Muller-Ebhardt H, Schnabel R 2010 Phys. Rev. Lett. 104 251102Google Scholar

    [13]

    Vahlbruch H, Mehmet M, Danzmann K, Schnabel R 2016 Phys. Rev. Lett. 117 110801Google Scholar

    [14]

    彭堃墀, 贾晓军, 苏晓龙, 谢常德 2011 光学学报 31 09001071

    Peng K C, Jia X J, Su X L, Xie C D 2011 Acta Opt. Sin. 31 09001071

    [15]

    贾晓军, 苏晓龙, 潘庆, 谢常德, 彭堃墀 2005 54 2717Google Scholar

    Jia X J, Su X L, Pan Q, Xie C D, Peng K C 2005 Acta Phys. Sin. 54 2717Google Scholar

    [16]

    赵超樱, 谭维翰 2005 54 4526Google Scholar

    Zhao C Y, Tan W H 2005 Acta Phys. Sin. 54 4526Google Scholar

    [17]

    Wang Y, Su X L, Shen H, Tan A H, Xie C D, Peng K C 2010 Phys. Rev. A 81 022311Google Scholar

    [18]

    Ou Z Y, Pereira S F, Kimble H J, Peng K C 1992 Phys. Rev. Lett. 68 3663Google Scholar

    [19]

    Zhang Y, Wang H, Li X Y, Jing J T, Xie C D, Peng K C 2000 Phys. Rev. A 62 023813Google Scholar

    [20]

    Laurat J, Coudreau T, Keller G, Treps N, Fabre C 2004 Phys. Rev. A 70 042315Google Scholar

    [21]

    Takei N, Yonezawa H, Aoki T, Furusawa A 2005 Phys. Rev. Lett. 94 220502Google Scholar

    [22]

    Wang Y, Shen H, Jin X L, Su X L, Xie C D, Peng K C 2010 Opt. Express 18 6149Google Scholar

    [23]

    Gottesman D, Preskill J 2001 Phys. Rev. A 63 022309Google Scholar

    [24]

    Yukawa M, Benichi H, Furusawa A 2008 Phys. Rev. A 77 022314Google Scholar

    [25]

    Li X Y, Pan Q, Jing J T, Zhang J, Xie C D, Peng K C 2002 Phys. Rev. Lett. 88 047904Google Scholar

    [26]

    Mattle K, Weinfurter H, Kwiat P G, Zeilinger A 1996 Phys. Rev. Lett. 76 4656Google Scholar

    [27]

    Braunstein S L, Kimble H J 2000 Phys. Rev. A 61 042302Google Scholar

    [28]

    Zhang J, Peng K C 2000 Phys. Rev. A 62 064302Google Scholar

    [29]

    Zhou Y Y, Jia X J, Li F, Xie C D, Peng K C 2015 Opt. Express 23 4952Google Scholar

    [30]

    Chen H X, Zhang J 2009 Phys. Rev. A 79 063826Google Scholar

    [31]

    Shang Y N, Jia X J, Shen Y M, Xie C D, Peng K C 2010 Opt. Lett. 35 853Google Scholar

    [32]

    Yan Z H, Jia X J, Su X L, Duan Z Y, Xie C D, Peng K C 2012 Phys. Rev. A 85 040305(R)Google Scholar

    [33]

    Duan L M, Giedke G, Cirac J I, Zoller P 2000 Phys. Rev. Lett. 84 2722Google Scholar

    [34]

    Simon R 2000 Phys. Rev. Lett. 84 2726Google Scholar

    [35]

    周瑶瑶, 蔚娟, 闫智辉, 贾晓军 2018 38 0727001

    Zhou Y Y, Yu J, Yan Z H, Jia X J 2018 Acta Opt. Sin. 38 0727001

  • 图 1  驻波腔与四镜环形腔级联的光学系统

    Figure 1.  Optical system of connecting a standing wave cavity and a four-mirror ring cavity in series.

    图 2  输出光场的量子关联噪声随输出镜对信号光场和闲置光场透射率之差的变化

    Figure 2.  Quantum correlation variances of two output beams versus the transmissivity differences of the output coupler for idle and signal fields.

    图 3  两驻波腔级联的光学系统

    Figure 3.  Optical system of two cascaded standing wave optical cavities.

    图 4  输出光场的纠缠度随光学隔离器传输效率的变化

    Figure 4.  Dependences of correlation degree of output optical fields on transmission efficiency of the optical isolator.

    图 5  输出光场的纠缠度随输入EPR纠缠态光场纠缠度的变化

    Figure 5.  Dependences of correlation degree of output optical fields on correlation degree of input EPR entanglement optical fields.

    图 6  输出光场的纠缠度随内腔损耗的变化

    Figure 6.  Dependences of correlation degree of output optical fields on intracavity loss.

    Baidu
  • [1]

    Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H, Zeilinger A 1997 Nature 390 575Google Scholar

    [2]

    Furusawa A, Sorensen J L, Braustein S L, Fuchs C A, Kimble H J, Polzik E S 1998 Science 282 706Google Scholar

    [3]

    Boschi D, Branca S, Marini F D, Hardy L, Popescu S 1998 Phys. Rev. Lett. 80 1121Google Scholar

    [4]

    Vaidman L 1994 Phys. Rev. A 49 1473Google Scholar

    [5]

    Braunstein S L, Kimble H J 1998 Phys. Rev. Lett. 80 869Google Scholar

    [6]

    Bowen W P, Schnabel R, Lam P K, Ralph T C 2004 Phys. Rev. A 69 012304Google Scholar

    [7]

    Eberle T, Händchen V, Duhme J, Franz T, Werner R F, Schnabel R 2011 Phys. Rev. A 83 052329Google Scholar

    [8]

    Mizuno J, Wakui K, Furusawa A, Sasaki M 2005 Phys. Rev. A 71 012304Google Scholar

    [9]

    Stoler D 1970 Phys. Rev. D 1 3217Google Scholar

    [10]

    Mehmet M, Vahlbruch H, Lastzka N, Danzmann K, Schnabel R 2010 Phys. Rev. A 81 013814Google Scholar

    [11]

    Mehmet M, Ast S, Eberle T, Steinlechner S, Vahlbruch H, Schnabel R 2011 Opt. Express 19 25763Google Scholar

    [12]

    Eberle T, Steinlechner S, Bauchrowitz J, Händchen V, Vahlbruch H, Mehmet M, Muller-Ebhardt H, Schnabel R 2010 Phys. Rev. Lett. 104 251102Google Scholar

    [13]

    Vahlbruch H, Mehmet M, Danzmann K, Schnabel R 2016 Phys. Rev. Lett. 117 110801Google Scholar

    [14]

    彭堃墀, 贾晓军, 苏晓龙, 谢常德 2011 光学学报 31 09001071

    Peng K C, Jia X J, Su X L, Xie C D 2011 Acta Opt. Sin. 31 09001071

    [15]

    贾晓军, 苏晓龙, 潘庆, 谢常德, 彭堃墀 2005 54 2717Google Scholar

    Jia X J, Su X L, Pan Q, Xie C D, Peng K C 2005 Acta Phys. Sin. 54 2717Google Scholar

    [16]

    赵超樱, 谭维翰 2005 54 4526Google Scholar

    Zhao C Y, Tan W H 2005 Acta Phys. Sin. 54 4526Google Scholar

    [17]

    Wang Y, Su X L, Shen H, Tan A H, Xie C D, Peng K C 2010 Phys. Rev. A 81 022311Google Scholar

    [18]

    Ou Z Y, Pereira S F, Kimble H J, Peng K C 1992 Phys. Rev. Lett. 68 3663Google Scholar

    [19]

    Zhang Y, Wang H, Li X Y, Jing J T, Xie C D, Peng K C 2000 Phys. Rev. A 62 023813Google Scholar

    [20]

    Laurat J, Coudreau T, Keller G, Treps N, Fabre C 2004 Phys. Rev. A 70 042315Google Scholar

    [21]

    Takei N, Yonezawa H, Aoki T, Furusawa A 2005 Phys. Rev. Lett. 94 220502Google Scholar

    [22]

    Wang Y, Shen H, Jin X L, Su X L, Xie C D, Peng K C 2010 Opt. Express 18 6149Google Scholar

    [23]

    Gottesman D, Preskill J 2001 Phys. Rev. A 63 022309Google Scholar

    [24]

    Yukawa M, Benichi H, Furusawa A 2008 Phys. Rev. A 77 022314Google Scholar

    [25]

    Li X Y, Pan Q, Jing J T, Zhang J, Xie C D, Peng K C 2002 Phys. Rev. Lett. 88 047904Google Scholar

    [26]

    Mattle K, Weinfurter H, Kwiat P G, Zeilinger A 1996 Phys. Rev. Lett. 76 4656Google Scholar

    [27]

    Braunstein S L, Kimble H J 2000 Phys. Rev. A 61 042302Google Scholar

    [28]

    Zhang J, Peng K C 2000 Phys. Rev. A 62 064302Google Scholar

    [29]

    Zhou Y Y, Jia X J, Li F, Xie C D, Peng K C 2015 Opt. Express 23 4952Google Scholar

    [30]

    Chen H X, Zhang J 2009 Phys. Rev. A 79 063826Google Scholar

    [31]

    Shang Y N, Jia X J, Shen Y M, Xie C D, Peng K C 2010 Opt. Lett. 35 853Google Scholar

    [32]

    Yan Z H, Jia X J, Su X L, Duan Z Y, Xie C D, Peng K C 2012 Phys. Rev. A 85 040305(R)Google Scholar

    [33]

    Duan L M, Giedke G, Cirac J I, Zoller P 2000 Phys. Rev. Lett. 84 2722Google Scholar

    [34]

    Simon R 2000 Phys. Rev. Lett. 84 2726Google Scholar

    [35]

    周瑶瑶, 蔚娟, 闫智辉, 贾晓军 2018 38 0727001

    Zhou Y Y, Yu J, Yan Z H, Jia X J 2018 Acta Opt. Sin. 38 0727001

Metrics
  • Abstract views:  9529
  • PDF Downloads:  90
  • Cited By: 0
Publishing process
  • Received Date:  22 November 2018
  • Accepted Date:  22 January 2019
  • Available Online:  01 March 2019
  • Published Online:  20 March 2019
  • /

    返回文章
    返回
    Baidu
    map