Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Focusing scattering light field with different states based on iterative algorithm

Duan Mei-Gang Zhao Ying Zuo Hao-Yi

Citation:

Focusing scattering light field with different states based on iterative algorithm

Duan Mei-Gang, Zhao Ying, Zuo Hao-Yi
科大讯飞翻译 (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Transmitting optical information through scattering medium has broad application prospects in biomedical, aerospace and other fields. However, the light passing through the scattering medium will cause wavefront distortion and optical information blurring. Wavefront shaping technology uses a mathematical matrix to characterize the characteristics of scattering medium, which can achieve refocusing and imaging after light propagation through the scattering medium. It mainly includes optical phase conjugation, optical transmission matrix and wavefront shaping based on iterative optimization. However, the iterative wavefront shaping is considered to be a cost-effective method. Based on the wavefront amplitude modulation technology, the wavefront amplitude of the incident light is continuously adjusted by using the optimization algorithm to find the corresponding wavefront amplitude distribution that can maximize the light intensity in the target area. The system generates binary patterns implemented with digital-micromirror device (DMD) based on on-off state of micromirror, where “on” represents 1 and “off” refers to 0. The DMD has a high refresh rate and can achieve high speed wavefront amplitude modulation by using the iteration algorithm. In the experiment, the scattering medium is prepared with TiO2, water and gelatin, whose persistence times are controlled with the water-gelatin ratio (WGR). In addition, the Pearson correlation coefficient (Cor) curve obtained through 300-s-measurement under different WGR conditions, which shows that the greater WGR, the shorter the persistence time is. The experiment mainly studies the focusing of the spatial light through scattering media by wavefront amplitude modulation, and discusses the ability of point guard algorithm (PGA) and genetic algorithm (GA) to control the scattered light field with different persistence times in 64 × 64 segments. The experimental results show that the PGA can achieve higher enhancement factor and more uniform multi-point focusing than the GA after 1000 iterations in the scattering medium with the same persistence time. The relative standard deviation value is inversely proportional to the WGR value when multi-point focusing can be completed. We also demonstrate that GA can only achieve single-point focusing when WGR = 40, and it cannot accomplish multi-point focusing in self-made scattering medium. This study not only verifies a method to achieve focusing scattering light field, but also provides a new scheme for testing the performance of the iterative wavefront shaping.
      Corresponding author: Duan Mei-Gang, duanmg.sxu@foxmail.com ; Zuo Hao-Yi, zuohaoyi@scu.edu.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 12204439) and the Staring Foundation of Scientific Research for the Doctor of the Taiyuan University of Science and Technology Foundation, China (Grant No. 20232104).
    [1]

    Yaqoob Z, Psaltis D, Feld M S, Yang C 2008 Nat. Photonics 2 110Google Scholar

    [2]

    Lai X T, Li Q Y, Chen Z Y, Shao X P, Pu J X 2021 Opt. Express 29 43280Google Scholar

    [3]

    赵富, 胡渝曜, 王鹏, 刘军 2023 72 154201Google Scholar

    Zhao F, Hu Y Y, Wang P, Liu J 2023 Acta Phys. Sin. 72 154201Google Scholar

    [4]

    Yang J M, He Q Z, Liu L X, Qu Y, Shao R J, Song B W, Zhao Y Y 2021 Light Sci. Appl. 10 149Google Scholar

    [5]

    Zhao Y Y, He Q Z, Li S N, Yang J M 2021 Opt. Lett. 46 1518Google Scholar

    [6]

    Duan M G, Yang Z G, Zhao Y, Fang L J, Zuo H Y, Li Z S, Wang D Q 2022 Opt. Laser. Technol. 156 108529Google Scholar

    [7]

    韩平丽, 刘飞, 张广, 陶禹, 邵晓鹏 2018 67 054202Google Scholar

    Han P L, Liu F, Zhang G, Tao Y, Shao X P 2018 Acta Phys. Sin. 67 054202Google Scholar

    [8]

    孙雪莹, 刘飞, 段景博, 牛耕田, 邵晓鹏 2021 70 224203Google Scholar

    Sun X Y, Liu F, Duan J B, Niu G T, Shao X P 2021 Acta Phys. Sin. 70 224203Google Scholar

    [9]

    李元铖, 翟爱平, 张腾, 赵文静, 王东 2022 光学学报 42 1411002Google Scholar

    Li Y C, Zhai A P, Zhang T, Zhao W J, Wang D 2022 Acta Opt. Sin. 42 1411002Google Scholar

    [10]

    李琼瑶, 扎西巴毛, 陈子阳, 蒲继熊 2020 光学学报 40 0111016Google Scholar

    Li Q Y, Zhaxi B M, Chen Z Y, Pu J X 2020 Acta Opt. Sin. 40 0111016Google Scholar

    [11]

    张诚, 方龙杰, 朱建华, 左浩毅, 高福华, 庞霖 2017 66 114202Google Scholar

    Zhang C, Fang L J, Zhu J H, Zuo H Y, Gao F H, Pang L 2017 Acta Phys. Sin. 66 114202Google Scholar

    [12]

    张熙程, 方龙杰, 庞霖 2018 67 104202Google Scholar

    Zhang X C, Fang L J, Pang L 2018 Acta Phys. Sin. 67 104202Google Scholar

    [13]

    罗嘉伟, 伍代轩, 梁家俊, 沈乐成 2024 激光与光电子学进展 61 1011008Google Scholar

    Luo J W, Wu D X, Liang J J, Shen Y C 2024 Laser Optoelectron. Prog. 61 1011008Google Scholar

    [14]

    Zhou S H, Xie H, Zhang C C, Hua Y Z, Zhang W H, Chen Q, Gu G H, Sui X B 2021 Optik 244 167516Google Scholar

    [15]

    朱磊, 邵晓鹏 2020 光学学报 40 0111005Google Scholar

    Zhu L, Shao X P 2020 Acta Opt. Sin. 40 0111005Google Scholar

    [16]

    Vellekoop I M, Mosk A P 2007 Opt. Lett. 32 2309Google Scholar

    [17]

    Vellekoop I M, Lagendijk A, Mosk A P 2010 Nat. Photonics 4 320Google Scholar

    [18]

    Conkey D B, Brown A N 2012 Opt. Express 20 4840Google Scholar

    [19]

    Woo C M, Zhao Q, Zhong T, Li H H, Yu Z P, Lai P X 2022 APL Photonics 7 046109Google Scholar

    [20]

    Feng Q, Yang F, Xu X Y, Zhang B, Ding Y C, Liu Q 2019 Opt. Express 27 36459Google Scholar

    [21]

    Conkey D B, Piestun R 2012 Opt. Express 20 27312Google Scholar

    [22]

    Duan M G, Zhao Y, Yang Z G, Deng X, Huangfu H L, Zuo H Y, Li Z S, Wang D Q 2023 Opt. Comm. 548 129832Google Scholar

    [23]

    Duan M G, Zhao Y, Huangfu H L, Deng X, Zuo H Y, Luo S R, Li Z S, Wang D Q 2023 Results Phys. 52 106767Google Scholar

    [24]

    Vellekoop I M, Mosk A P 2008 Opt. Commun. 281 3071Google Scholar

    [25]

    Conkey D B, Caravaca-Aguirre A M, Piestun R 2012 Opt. Express 20 1733Google Scholar

    [26]

    Vellekoop I M, Aegerter C M 2010 Proc. SPIE 7554 755430Google Scholar

  • 图 1  散射光场聚焦示意图 (a)光透过散射介质的散斑; (b)调制后的光透过散射介质的聚焦; (c) PGA流程图

    Figure 1.  Schematics of focusing of scattering field: (a) Speckle formed by light passing scattering medium; (b) focusing by modulated light passing scattering medium; (c) the flowchart of PGA.

    图 2  不同WGR下散斑相关系数随时间的变化

    Figure 2.  Variation curves of speckle correlation with time under different WGR.

    图 3  不同WGR下每隔30 s散斑随时间的变化图

    Figure 3.  Variation of speckle with time every 30 s under different WGR.

    图 4  实验装置

    Figure 4.  Experimental setup.

    图 5  不同WGR下PGA和GA的单点聚焦实验结果 (a) PBR值随迭代次数的变化; (b)迭代过程中的最佳聚焦效果; 比例尺为150 μm

    Figure 5.  Experimental results of single-point focusing of PGA and GA under different WGR: (a) Variation curves of PBR value with iteration times; (b) the best focusing effect in iterative process; Scalar: 150 μm.

    图 6  不同WGR下PGA和GA的多点聚焦实验结果 (a) 2点聚焦; (b) 3点聚焦; 比例尺为150 μm

    Figure 6.  Experimental results of multi-point focusing of PGA and GA under different WGR: (a) Two-point focusing; (b) three-point focusing; Scalar: 150 μm.

    图 7  不同WGR下多点聚焦的平均PBR和相对标准偏差RSD (N是焦点个数) (a) PGA和GA的平均PBR; (b) PGA的相对标准偏差RSD;

    Figure 7.  Average PBR and relative standard deviation RSD of multi-point focusing under different WGR: (a) The average PBR of PGA and GA; (b) the relative standard deviation RSD of PGA. N is the number of focal points.

    Baidu
  • [1]

    Yaqoob Z, Psaltis D, Feld M S, Yang C 2008 Nat. Photonics 2 110Google Scholar

    [2]

    Lai X T, Li Q Y, Chen Z Y, Shao X P, Pu J X 2021 Opt. Express 29 43280Google Scholar

    [3]

    赵富, 胡渝曜, 王鹏, 刘军 2023 72 154201Google Scholar

    Zhao F, Hu Y Y, Wang P, Liu J 2023 Acta Phys. Sin. 72 154201Google Scholar

    [4]

    Yang J M, He Q Z, Liu L X, Qu Y, Shao R J, Song B W, Zhao Y Y 2021 Light Sci. Appl. 10 149Google Scholar

    [5]

    Zhao Y Y, He Q Z, Li S N, Yang J M 2021 Opt. Lett. 46 1518Google Scholar

    [6]

    Duan M G, Yang Z G, Zhao Y, Fang L J, Zuo H Y, Li Z S, Wang D Q 2022 Opt. Laser. Technol. 156 108529Google Scholar

    [7]

    韩平丽, 刘飞, 张广, 陶禹, 邵晓鹏 2018 67 054202Google Scholar

    Han P L, Liu F, Zhang G, Tao Y, Shao X P 2018 Acta Phys. Sin. 67 054202Google Scholar

    [8]

    孙雪莹, 刘飞, 段景博, 牛耕田, 邵晓鹏 2021 70 224203Google Scholar

    Sun X Y, Liu F, Duan J B, Niu G T, Shao X P 2021 Acta Phys. Sin. 70 224203Google Scholar

    [9]

    李元铖, 翟爱平, 张腾, 赵文静, 王东 2022 光学学报 42 1411002Google Scholar

    Li Y C, Zhai A P, Zhang T, Zhao W J, Wang D 2022 Acta Opt. Sin. 42 1411002Google Scholar

    [10]

    李琼瑶, 扎西巴毛, 陈子阳, 蒲继熊 2020 光学学报 40 0111016Google Scholar

    Li Q Y, Zhaxi B M, Chen Z Y, Pu J X 2020 Acta Opt. Sin. 40 0111016Google Scholar

    [11]

    张诚, 方龙杰, 朱建华, 左浩毅, 高福华, 庞霖 2017 66 114202Google Scholar

    Zhang C, Fang L J, Zhu J H, Zuo H Y, Gao F H, Pang L 2017 Acta Phys. Sin. 66 114202Google Scholar

    [12]

    张熙程, 方龙杰, 庞霖 2018 67 104202Google Scholar

    Zhang X C, Fang L J, Pang L 2018 Acta Phys. Sin. 67 104202Google Scholar

    [13]

    罗嘉伟, 伍代轩, 梁家俊, 沈乐成 2024 激光与光电子学进展 61 1011008Google Scholar

    Luo J W, Wu D X, Liang J J, Shen Y C 2024 Laser Optoelectron. Prog. 61 1011008Google Scholar

    [14]

    Zhou S H, Xie H, Zhang C C, Hua Y Z, Zhang W H, Chen Q, Gu G H, Sui X B 2021 Optik 244 167516Google Scholar

    [15]

    朱磊, 邵晓鹏 2020 光学学报 40 0111005Google Scholar

    Zhu L, Shao X P 2020 Acta Opt. Sin. 40 0111005Google Scholar

    [16]

    Vellekoop I M, Mosk A P 2007 Opt. Lett. 32 2309Google Scholar

    [17]

    Vellekoop I M, Lagendijk A, Mosk A P 2010 Nat. Photonics 4 320Google Scholar

    [18]

    Conkey D B, Brown A N 2012 Opt. Express 20 4840Google Scholar

    [19]

    Woo C M, Zhao Q, Zhong T, Li H H, Yu Z P, Lai P X 2022 APL Photonics 7 046109Google Scholar

    [20]

    Feng Q, Yang F, Xu X Y, Zhang B, Ding Y C, Liu Q 2019 Opt. Express 27 36459Google Scholar

    [21]

    Conkey D B, Piestun R 2012 Opt. Express 20 27312Google Scholar

    [22]

    Duan M G, Zhao Y, Yang Z G, Deng X, Huangfu H L, Zuo H Y, Li Z S, Wang D Q 2023 Opt. Comm. 548 129832Google Scholar

    [23]

    Duan M G, Zhao Y, Huangfu H L, Deng X, Zuo H Y, Luo S R, Li Z S, Wang D Q 2023 Results Phys. 52 106767Google Scholar

    [24]

    Vellekoop I M, Mosk A P 2008 Opt. Commun. 281 3071Google Scholar

    [25]

    Conkey D B, Caravaca-Aguirre A M, Piestun R 2012 Opt. Express 20 1733Google Scholar

    [26]

    Vellekoop I M, Aegerter C M 2010 Proc. SPIE 7554 755430Google Scholar

Metrics
  • Abstract views:  1975
  • PDF Downloads:  70
  • Cited By: 0
Publishing process
  • Received Date:  20 December 2023
  • Accepted Date:  10 April 2024
  • Available Online:  08 May 2024
  • Published Online:  20 June 2024

/

返回文章
返回
Baidu
map