Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Resonance ionization spectrum of autoionization states of lutetium atom

Zhang Jun-Yao Xiong Jing-Yi Wei Shao-Qiang Li Yun-Fei Lu Xiao-Yong

Citation:

Resonance ionization spectrum of autoionization states of lutetium atom

Zhang Jun-Yao, Xiong Jing-Yi, Wei Shao-Qiang, Li Yun-Fei, Lu Xiao-Yong
PDF
HTML
Get Citation
  • 177Lu is an important medical isotope used in imaging-guided radiotherapy, and it can be produced by irradiating 176Lu or 176Yb with high abundance. With an increasing demand for medical isotopes, it is very essential to improve the supply capacity for 177Lu. The multi-step multi-color photoionization method is an effective method to obtain isotopes, and the information of odd-parity autoionization levels is essential. Laser resonance ionization spectroscopy is one of a few spectroscopic experimental methods that can study autoionization levels. An experimental system is developed for the frontier spectroscopic research, and it consists of custom-made tunable lasers and a high-resolution time of flight mass spectrometer. The lifetime of the excited state 35274.5 cm–1 is measured to be (31.6 ± 1.7) ns by the delayed photoionization method for the first time. A three-step three-color photoionization process is used to detect the autoionization levels, with a delay of 30 ns between λ2λ1 and λ3λ2 respectively, in order to avoid any unexpected transitions. Forty-seven odd-parity autoionization levels are obtained, of which 33 levels are discovered for the first time, and the λ2 and λ1 are blocked to exclude possible interference peaks, such as the λ1+λ3+λ3 transition. Several autoionization levels show asymmetrical peak shapes, and the Fano fitting is carried out for all the levels to determine the widths and relative transition strengths of the autoionizing transitions. This study provides critical data for the high-efficient photoionization of lutetium atoms in the visible range. The angular momenta of 21 odd-parity autoionization levels in an energy range of 50650–51650 cm–1 are identified for the first time, which provides a reference for determining the forbidden state of electric dipole transitions from other excited states and ascertaining the electronic configuration.
      Corresponding author: Zhang Jun-Yao, junyao-z18@tsinghua.org.cn
    • Funds: Project supported by the Liaoyuan Project of China Nuclear Energy Industry Corporation.
    [1]

    Fuoco V, Argiroffi G, Mazzaglia S, Lorenzoni A, Guadalupi V, Franza A, Scalorbi F, Ailberti G, Chiesa C, Procopio G, Seregni E, Maccauro M 2022 Tumori. J. 108 315Google Scholar

    [2]

    Mittra E S 2018 Am. J. Roentgenol. 211 278Google Scholar

    [3]

    Vogel W V, van der Marck S C, Versleijen M W J 2021 Eur. J. Nucl. Med. Mol. I. 48 2329Google Scholar

    [4]

    Dash A, Pillai M R A, Knapp F F 2015 Nucl. Med. Molec. Imag. 49 85Google Scholar

    [5]

    D’yachkov A B, Kovalevich S K, Labozin A V, Labozin V P, Mironov S M, Panchenko V Y, Firsov V A, Tsvetkov G O, Shatalova G G 2012 Quantum Electron 42 953Google Scholar

    [6]

    Gadelshin V, Cocolios T, Fedoseev V, Heinke R, Kieck T, Marsh B, Naubereit P, Rothe S, Stora T, Studer D, van Duppen P, Wendt K 2017 HFI 238 28Google Scholar

    [7]

    Li R, Lassen J, Kunz P, Mostamand M, Reich B B, Teigelhofer A, Yan H, Ames F 2019 Spectrochim. Acta B 158 105633Google Scholar

    [8]

    Gadelshin V, Heinke R, Kieck T, Kron T, Naubereit P, Rosch F, Stora T, Studer D, Wendt K 2019 Radiochim. Acta 107 653Google Scholar

    [9]

    Suryanarayana M V, Sankari M 2021 Sci. Rep-UK 11 18292Google Scholar

    [10]

    Suryanarayana M V 2021 Sci. Rep-UK 11 6118Google Scholar

    [11]

    Wendt K, Trautmann N 2005 Int. J. Mass. Spectrom. 242 161Google Scholar

    [12]

    Xu C B, Xu X Y, Ma H, Li L Q, Huang W, Chen D Y, Zhu F R 1993 J. Phys. B-At. Mol. Opt. 26 2827Google Scholar

    [13]

    Kujirai O, Ogawa Y 1998 J. Phys. Soc. Jpn. 63 1056Google Scholar

    [14]

    Ogawa Y, Kujirai O 1999 J. Phys. Soc. Jpn. 68 428Google Scholar

    [15]

    Li R, Lassen J, Zhong Z P, Jia F D, Mostamand M, Li X K, Reich B B, Teigelhofer A, Yan H 2017 Phys. Rev. A 95 052501Google Scholar

    [16]

    李志明, 朱凤蓉, 张子斌, 邓虎, 翟利华, 王长海, 任向军, 万可友, 张利兴 2005 质谱学报 26 45Google Scholar

    Li Z M, Zhu F R, Zhang Z B, Deng H, Zhai L H, Wang C H, Ren X J, Wan K Y, Zhang L X 2005 J. Chin. Mass. Spectr. Soc. 26 45Google Scholar

    [17]

    D’yachkov A B, Gorkunov A A, Labozin A V, Mironov S M, Tsvetkov G O, Panchenko V Y, Firsov V A 2018 Opt. Spectrosc 125 839Google Scholar

    [18]

    Rath A D, Biswal D, Kundu S 2021 J. Quant. Spectrosc. Ra. 270 107696Google Scholar

    [19]

    Voss A, Sonnenschein V, Campbell P, Cheal B, Kron T, Moore I D, Pohjalainen I, Raeder S, Trautmann N, Wendt K 2017 Phys. Rev. A 95 032506Google Scholar

    [20]

    Shen X P, Wang W L, Zhai L H, Deng H, Xu J, Yuan X L, Wei G Y, Wang W, Fang S, Su Y Y, Li Z M 2018 Spectrochim. Acta B 145 96Google Scholar

    [21]

    Kneip N, Dullmann C E, Gadelshin V, Heinke R, Mokry C, Raeder S, Runke J, Studer D, Trautmann N, Weber F, Wendt K 2020 HFI 241 45Google Scholar

    [22]

    Sahoo A C, Mandal P K, Shah M L, Dev V 2020 J. Quant. Spectrosc. Ra. 241 106714Google Scholar

    [23]

    张钧尧, 薛轶, 周鸿儒 2024 原子与分子 41 014002Google Scholar

    Zhang J Y, Xue Y, Zhou H R 2024 J. Atom. Mol. Phys. 41 014002Google Scholar

    [24]

    李云飞, 张钧尧, 柴俊杰, 魏少强, 陈晨 2023 真空与低温 29 486Google Scholar

    Li Y F, Zhang J Y, Chai J J, Wei S Q, Chen C 2023 Vacuum and Cryogenics 29 486Google Scholar

    [25]

    Fedchak J A, der Hartog E A, Lawler J E, Palmeri P, Quinet P, Biemont E 2000 Astrophys. J. 542 1109Google Scholar

    [26]

    Fano U 1961 Phys. Rev. 124 1866Google Scholar

  • 图 1  激光共振电离飞行时间质谱系统. PC为电脑, DG为延时发生器, Nd:YAG为Nd:YAG激光器, Dye为染料激光器, WM为波长计, BS为光束合成器, Lens为镜组, ECB为电控机箱, TOF为飞行时间质谱, BCA为Boxcar平均

    Figure 1.  Resonance ionization time-of-flight mass spectroscopy system. PC is computer, DG is delay generator, Nd:YAG is Nd:YAG laser, Dye is dye laser, WM is wavelength meter, BS is beam synthesis, Lens is lens, ECB is electronic control box, TOF is time of flight mass spectrometry, BCA is box car averager.

    图 2  多步多色光电离路径示意图

    Figure 2.  Schematic representation of the multi-step multi-color photoionization path.

    图 3  激发态35274.5 cm–1能级寿命曲线

    Figure 3.  Curve of lifetime of 35274.5 cm–1 excited state.

    图 4  自电离态扫描典型谱图

    Figure 4.  Typical spectrum of the scanning of autoionization levels.

    表 1  由激发态35274.5 cm–1跃迁的奇宇称自电离态能级

    Table 1.  Odd parity autoionization levels connecting from the excited level 35274.5 cm–1.

    E/cm–1 Width Strength Ref.[18] E/cm–1 Width Strength Ref.[18]
    53408.90 N S New 51873.82 B I New
    53353.74 Ϯ B S New 51724.60 Ϯ M S New
    53330.68 M I New 51642.24 N S 51642.2
    53321.80 N I New 51628.73 N I 51628.9
    53310.02 M S New 51509.40 M S 51509.4
    53298.32 N I New 51494.64 B S New
    53267.79 M S New 51368.06 M S 51386.0
    53259.85 N W New 51295.65 Ϯ B W 51294.1
    53251.30 N I New 51150.11 Ϯ B W 51151.5
    53219.59 Ϯ M S New 51125.54 B I New
    53194.18 Ϯ B I New 51014.87 M W New
    53147.77 M W New 50986.87 N W 50987.0
    53138.94 Ϯ M I New 50974.56 N W 50974.7
    53046.75 Ϯ B I New 50950.65 M I 50950.7
    53033.60 Ϯ M I New 50908.68 Ϯ B I New
    52981.68 Ϯ B I New 50875.33 M W 50875.1
    52806.85 M I New 50872.30 M I 50872.3
    52678.69 Ϯϯ B S New 50834.41 Ϯ B I 50833.3
    52490.86 Ϯ B W New 50804.68 N W New
    52420.31 N W New 50774.92 Ϯ M I 50774.3
    52415.04 N W New 50726.72 Ϯ M S New
    52377.33 Ϯ M I New 50700.60 M S 50700.7
    52280.25 N I New 50657.49 M S 50657.6
    52508.75 B W New
    注: Ϯ 谱线呈现Fano峰形; ϯ 极宽峰, 峰半高宽>100 cm–1.
    DownLoad: CSV

    表 2  奇宇称自电离态能级的角动量

    Table 2.  J-values of odd parity autoionization levels.

    From 35274.5 cm–1From 33831.5 cm–1 [18]From 34610.5 cm–1J
    E/cm–1WidthE/cm–1WidthE/cm–1Width
    51642.21N51642.2N51642.06N3/2
    51628.71N51628.9N51629.03N3/2
    51509.42M51509.4N5/2
    51494.66B7/2
    51368.06M51368.0N51368.12M3/2
    51295.65B51294.1B5/2
    51014.87B7/2
    50986.87N50987.0N5/2
    50974.56N50974.7N50974.47M3/2
    50950.65M50950.7N5/2
    50913.3N50913.18N1/2
    50908.68B7/2
    50887.8N50887.65N1/2
    50875.33M50875.1B50875.32M3/2
    50872.30M50872.3N5/2
    50834.41B50833.3B50832.77B3/2
    50804.68N7/2
    50774.92M50774.3M50773.31M3/2
    50726.72M7/2
    50700.60M50700.7N5/2
    50657.49M50657.6N5/2
    DownLoad: CSV
    Baidu
  • [1]

    Fuoco V, Argiroffi G, Mazzaglia S, Lorenzoni A, Guadalupi V, Franza A, Scalorbi F, Ailberti G, Chiesa C, Procopio G, Seregni E, Maccauro M 2022 Tumori. J. 108 315Google Scholar

    [2]

    Mittra E S 2018 Am. J. Roentgenol. 211 278Google Scholar

    [3]

    Vogel W V, van der Marck S C, Versleijen M W J 2021 Eur. J. Nucl. Med. Mol. I. 48 2329Google Scholar

    [4]

    Dash A, Pillai M R A, Knapp F F 2015 Nucl. Med. Molec. Imag. 49 85Google Scholar

    [5]

    D’yachkov A B, Kovalevich S K, Labozin A V, Labozin V P, Mironov S M, Panchenko V Y, Firsov V A, Tsvetkov G O, Shatalova G G 2012 Quantum Electron 42 953Google Scholar

    [6]

    Gadelshin V, Cocolios T, Fedoseev V, Heinke R, Kieck T, Marsh B, Naubereit P, Rothe S, Stora T, Studer D, van Duppen P, Wendt K 2017 HFI 238 28Google Scholar

    [7]

    Li R, Lassen J, Kunz P, Mostamand M, Reich B B, Teigelhofer A, Yan H, Ames F 2019 Spectrochim. Acta B 158 105633Google Scholar

    [8]

    Gadelshin V, Heinke R, Kieck T, Kron T, Naubereit P, Rosch F, Stora T, Studer D, Wendt K 2019 Radiochim. Acta 107 653Google Scholar

    [9]

    Suryanarayana M V, Sankari M 2021 Sci. Rep-UK 11 18292Google Scholar

    [10]

    Suryanarayana M V 2021 Sci. Rep-UK 11 6118Google Scholar

    [11]

    Wendt K, Trautmann N 2005 Int. J. Mass. Spectrom. 242 161Google Scholar

    [12]

    Xu C B, Xu X Y, Ma H, Li L Q, Huang W, Chen D Y, Zhu F R 1993 J. Phys. B-At. Mol. Opt. 26 2827Google Scholar

    [13]

    Kujirai O, Ogawa Y 1998 J. Phys. Soc. Jpn. 63 1056Google Scholar

    [14]

    Ogawa Y, Kujirai O 1999 J. Phys. Soc. Jpn. 68 428Google Scholar

    [15]

    Li R, Lassen J, Zhong Z P, Jia F D, Mostamand M, Li X K, Reich B B, Teigelhofer A, Yan H 2017 Phys. Rev. A 95 052501Google Scholar

    [16]

    李志明, 朱凤蓉, 张子斌, 邓虎, 翟利华, 王长海, 任向军, 万可友, 张利兴 2005 质谱学报 26 45Google Scholar

    Li Z M, Zhu F R, Zhang Z B, Deng H, Zhai L H, Wang C H, Ren X J, Wan K Y, Zhang L X 2005 J. Chin. Mass. Spectr. Soc. 26 45Google Scholar

    [17]

    D’yachkov A B, Gorkunov A A, Labozin A V, Mironov S M, Tsvetkov G O, Panchenko V Y, Firsov V A 2018 Opt. Spectrosc 125 839Google Scholar

    [18]

    Rath A D, Biswal D, Kundu S 2021 J. Quant. Spectrosc. Ra. 270 107696Google Scholar

    [19]

    Voss A, Sonnenschein V, Campbell P, Cheal B, Kron T, Moore I D, Pohjalainen I, Raeder S, Trautmann N, Wendt K 2017 Phys. Rev. A 95 032506Google Scholar

    [20]

    Shen X P, Wang W L, Zhai L H, Deng H, Xu J, Yuan X L, Wei G Y, Wang W, Fang S, Su Y Y, Li Z M 2018 Spectrochim. Acta B 145 96Google Scholar

    [21]

    Kneip N, Dullmann C E, Gadelshin V, Heinke R, Mokry C, Raeder S, Runke J, Studer D, Trautmann N, Weber F, Wendt K 2020 HFI 241 45Google Scholar

    [22]

    Sahoo A C, Mandal P K, Shah M L, Dev V 2020 J. Quant. Spectrosc. Ra. 241 106714Google Scholar

    [23]

    张钧尧, 薛轶, 周鸿儒 2024 原子与分子 41 014002Google Scholar

    Zhang J Y, Xue Y, Zhou H R 2024 J. Atom. Mol. Phys. 41 014002Google Scholar

    [24]

    李云飞, 张钧尧, 柴俊杰, 魏少强, 陈晨 2023 真空与低温 29 486Google Scholar

    Li Y F, Zhang J Y, Chai J J, Wei S Q, Chen C 2023 Vacuum and Cryogenics 29 486Google Scholar

    [25]

    Fedchak J A, der Hartog E A, Lawler J E, Palmeri P, Quinet P, Biemont E 2000 Astrophys. J. 542 1109Google Scholar

    [26]

    Fano U 1961 Phys. Rev. 124 1866Google Scholar

  • [1] Wang Pin-Yi, Jia Xin-Yan, Fan Dai-He, Chen Jing. Resonance-like enhancement in high-order above-threshold ionzation of argon at different wavelengths. Acta Physica Sinica, 2015, 64(14): 143201. doi: 10.7498/aps.64.143201
    [2] Deng Shan-Hong, Gao Song, Li Yong-Ping, Pei Yun-Chang, Lin Sheng-Lu. A semiclassical analyses on the auto-ionization of lithium atom in parallel electric and magnetic fields. Acta Physica Sinica, 2010, 59(2): 826-831. doi: 10.7498/aps.59.826
    [3] Xiao Ying, Dai Chang-Jian, Zhao Hong-Ying, Qin Wen-Jie. Investigation of odd-parity excited states of europium atoms by resonant photoionization spectroscopy. Acta Physica Sinica, 2009, 58(5): 3071-3077. doi: 10.7498/aps.58.3071
    [4] Qin Wen-Jie, Dai Chang-Jian, Zhao Hong-Ying, Xiao Ying. Spectra of Rydberg states of Sm atom measured with autoionization detection method. Acta Physica Sinica, 2009, 58(1): 209-214. doi: 10.7498/aps.58.209
    [5] Zhao Hong-Ying, Dai Chang-Jian, Guan Feng. Two-step resonant photoionization spectra of Sm atom. Acta Physica Sinica, 2009, 58(1): 215-222. doi: 10.7498/aps.58.215
    [6] Yuan Wei-Guo, Dai Chang-Jian, Jin Song, Zhao Hong-Ying, Guan Feng. Study of Ba 6pnd(J=1, 3)autoionizing states. Acta Physica Sinica, 2008, 57(7): 4076-4082. doi: 10.7498/aps.57.4076
    [7] Yang Zhi-Hu, Du Shu-Bin, Zeng Xian-Tang, Ren Shou-Tian, Song Zhang-Yong, Su Hong, Wang You-De. Research on EUV spectra of highly ionized titanium. Acta Physica Sinica, 2006, 55(5): 2206-2209. doi: 10.7498/aps.55.2206
    [8] ZHANG LI-MIN, CHEN JUN, XU HAI-FENG, DAI JING-HUA, LIU SHI-LIN, CHEN CONG-XIANG, MA XING-XIAO. (2+1) REMPI SPECTRUM OF RYDBERG STATES OF S ATOMS IN THE 243—263 nm REGION. Acta Physica Sinica, 1999, 48(7): 1204-1209. doi: 10.7498/aps.48.1204
    [9] LI QUAN-XIN, RAN QIN, CHEN CONG-XIANG, SHENG LIU-SI, YU SHU-QIN, ZHANG YUN-WU, MA XING-XIAO. PHOTOIONIZATION STUDIES OF DIBROMOMETHANE USING SYNCHROTRON RADIATION: A STUDY OF VIBRATIONAL AUTOIONIZATION STATES FOR CH2Br2 IN 10-12eV. Acta Physica Sinica, 1996, 45(11): 1800-1806. doi: 10.7498/aps.45.1800
    [10] Dai Chang-Jian, Shu Xiao-Wu, Li Qian, Zhang Sen, Fang Da-Wei. . Acta Physica Sinica, 1995, 44(5): 678-684. doi: 10.7498/aps.44.678
    [11] DAI CHANG-JIAN. INTERACTIONS OF AUTOIONIZING SERIES. Acta Physica Sinica, 1994, 43(3): 369-379. doi: 10.7498/aps.43.369
    [12] ZHANG LI, SHANG REN-CHENG, XU SI-DA. ESTIMATION OF LASER RESONANCE IONIZATION EFFICIENCY. Acta Physica Sinica, 1992, 41(3): 379-386. doi: 10.7498/aps.41.379
    [13] HU SU-FEN, ZHANG SEN, CHEN XING. OBSERVATION AND MEASUREMENT OF THE AUTOIO-NIZATION SPECTRA FOR 4f76s(7S)np SERIES OF Eu. Acta Physica Sinica, 1990, 39(9): 1370-1378. doi: 10.7498/aps.39.1370
    [14] WU BI-RU, XU YUN-FEI, ZHENG YOU-FENG, HU YONG-YAN, LU JIE. THE ODD PARITY AUTOIONIZING SPECTRA OF YBI. Acta Physica Sinica, 1990, 39(7): 48-53. doi: 10.7498/aps.39.48
    [15] ZHANG SEN, QIU JI-ZHEN, MEI SHI-MIN, CHEN XING. LINEAR STARK EFFECT OF THE n′dnl AUTOIONIZATION STATES OF Ca AND Sr ATOMS IN THE LOW-FIELD REGION. Acta Physica Sinica, 1990, 39(8): 32-37. doi: 10.7498/aps.39.32
    [16] ZHANG LIAN-FANG, ZHAO WEN-ZHENG, SHANG REN-CHENG, PAN LI, WANG SHI-LIANG, WEN KE-LING, CHEN DIE-YAN. STUDY OF Ne AUTOIONISING STATES WITH PULSED ELECTRIC FIELD OPTOGALVANIC SPECTROSCOPY. Acta Physica Sinica, 1990, 39(12): 1870-1876. doi: 10.7498/aps.39.1870
    [17] DING GANG-JIAN, SHANG REN-CHENG, ZHANG LIAN-FANG, WEN KE-LING, HUI QIN, CHEN DIE-YAN. EXPERIMENTAL STUDY OF RYDBERG STATES OF AU ATOM. Acta Physica Sinica, 1989, 38(7): 1048-1055. doi: 10.7498/aps.38.1048
    [18] QIU JI-ZHEN, ZHANG SEN, WANG GANG. RESONANCES OF PHOTOIONIZATION OF Ca AND Sr ATOMS IN AN ELECTRIC FIELD. Acta Physica Sinica, 1989, 38(7): 1172-1176. doi: 10.7498/aps.38.1172
    [19] LIU LEI, TONG XIAO-MIN, LI JIA-MING. PHOTOIONIZATION OF IONIZED IRON ATOMS. Acta Physica Sinica, 1988, 37(11): 1800-1806. doi: 10.7498/aps.37.1800
    [20] LU JIE, HU SU-FEN, FENG RONG, LENG GUANG-YAO, SUN JlA-ZHEN, XU YUN-FEI. OBSERVATION AND MEASURMENT OF AUTOIONIZATION SPECTRA FOR 5p1/2ns SERIES OF Sr. Acta Physica Sinica, 1985, 34(12): 1567-1572. doi: 10.7498/aps.34.1567
Metrics
  • Abstract views:  3146
  • PDF Downloads:  81
  • Cited By: 0
Publishing process
  • Received Date:  13 June 2023
  • Accepted Date:  18 August 2023
  • Available Online:  19 August 2023
  • Published Online:  05 October 2023

/

返回文章
返回
Baidu
map