-
In spectral beam combining systems based on a grating-external cavity, due to some factors such as the “smile” effect of the semiconductor laser array and the error of the optical components in the external cavity, the beam from one emitter transmits into the external cavity and then can return to other emitters, thereby forming beam crosstalk between the two emitters. In this work, in order to investigate the physical mechanism of beam crosstalk and the influence of beam crosstalk on beam properties such as locked spectra and beam combining efficiency, based on the optical feedback semiconductor rate equation, the beam modes that can stably oscillate in the coupling cavity are derived, and the coupling cavity oscillating model is built. With the consideration of the mode competition mechanism in the coupling cavity, the effects of different crosstalk between two emitters with different intervals on the locked spectra are analyzed in detail. The results show that crosstalk leads to the shift of the peak of locked spectrum and the generation of sub-peak. The crosstalk between two closer emitters has a more serious influence on the beam spectrum structure, combined beam spot, and combining efficiency. The combining efficiencies influencing the 1st, 2nd and 3rd crosstalk are 45.5%, 50.2%, and 63.8%, respectively (When there is no crosstalk, the efficiency is 80.1%). Finally, the results of the theoretical analysis are verified experimentally, and the experimentally observed spectra under the influence of crosstalk show phenomena such as peak degradation, peak shift, edge burrs, and side lobes in spectra, which are consistent with the theoretical predictions. Moreover, according to the simulation results and experimental observations, it is found that the crosstalk can be suppressed to a certain extent by increasing the spacing between emitters, and the Galileo telescope system is suggested to suppress crosstalk and optimize the spectral structure and beam combining efficiency. Compared with the Kepler telescope structure, the Galileo telescope does not have a real focal point, which can prevent the local power from being too high, thereby damaging the optical components.
-
Keywords:
- beam crosstalk /
- diode laser array /
- rate equation /
- mode resonance
[1] Yan Y X, Zheng Y, Sun H G, Duan J A 2021 Front. Phys. 9 1
Google Scholar
[2] Verdaasdonk R M, Borst C 1991 Appl. Opt. 30 2172
Google Scholar
[3] Extance A 2015 Nature 521 408
Google Scholar
[4] Brauch U, Loosen P, Opower H 2000 Appl. Phys. 78 303
Google Scholar
[5] Sanchez-Rubio A, Fan T Y, Augst S J, Goyal A K, Creedon K J, Gopinath J T, Daneu V, Chann B, Huang R 2014 Lincoln Lab. J. 20 52
[6] Vijayakumar D, Jensen O B, Ostendorf R, Westphalen T, Thestrup B 2010 Opt. Express 18 893
Google Scholar
[7] Hecht J 2012 Laser Focus World 48 50
[8] Huang R K, Chann B, Burgess J, Lochman B, Zhou W, Cruz M, Cook R, Dugmore D, Shattuck J, Tayebati R 2015 Proc. SPIE 9730 97300C-1
Google Scholar
[9] Sevian A, Andrusyak O, Ciapurin I, Smirnov V, Venus G, Glebov L 2008 Opt. Lett. 33 384
Google Scholar
[10] Ma H J, Xiao Y, Hu C, Song Y Y, Tang X H 2021 Appl. Opt. 60 8213
Google Scholar
[11] Song Y Y, Yu X, Hu C, Wang P, Ma H J, Tang X H 2021 Appl. Opt. 61 3390
Google Scholar
[12] Wu Z, Yang L, Zhang B 2017 Appl. Opt. 56 1
Google Scholar
[13] Meng H C, Sun T Y, Tan H, Yu J H, Du W C, Tian F, Li J M, Gao S X, Wang X J, Wu D Y 2015 Opt. Express 23 21819
Google Scholar
[14] Zhu Z D, Gou L, Jiang M H, Hui Y L, Lei H, Li Q 2014 Opt. Express 22 17804
Google Scholar
[15] Lang R, Kobayashi K 1980 IEEE J. Quant. Electron. 16 347
Google Scholar
[16] Memon F A, Morichetti F, Arain Z A, Korai U A, Melloni A 2019 Wireless Pers. Commun. 106 2149
Google Scholar
[17] 王安帮 2006 硕士学位论文 (太原: 太原理工大学)
Wang A B 2006 M. S. Dissertation (Taiyuan: Taiyuan University of Science and Technology) (in Chinese)
[18] Binder J O, Cormack G D 1989 IEEE J. Quant. Electron. 25 2255
Google Scholar
[19] Tromborg B, Osmundsen J H, Olesen H 1984 IEEE J. Quant. Electron. QE-20 1023
Google Scholar
[20] Gong H, Liu Z G, Zhou Y L, Zhang W B, Lv T 2014 Appl. Opt. 53 694
Google Scholar
[21] 钟哲强, 杨 磊, 胡小川, 张 彬 2015 中国激光 42 1002010
Google Scholar
Zhong Z Q, Yang L, Hu X C, Zhang B 2015 Chin. J. Lasers 42 1002010
Google Scholar
[22] Yang L, Wu Z, Zhong Z Q, Zhang B 2017 Opt. Commun. 384 30
Google Scholar
[23] 吴肖杰 2018 硕士学位论文 (长春: 长春理工大学)
Wu X J 2018 M. S. Dissertation (Changchun: Changchun University of Science and Technology) (in Chinese)
-
-
[1] Yan Y X, Zheng Y, Sun H G, Duan J A 2021 Front. Phys. 9 1
Google Scholar
[2] Verdaasdonk R M, Borst C 1991 Appl. Opt. 30 2172
Google Scholar
[3] Extance A 2015 Nature 521 408
Google Scholar
[4] Brauch U, Loosen P, Opower H 2000 Appl. Phys. 78 303
Google Scholar
[5] Sanchez-Rubio A, Fan T Y, Augst S J, Goyal A K, Creedon K J, Gopinath J T, Daneu V, Chann B, Huang R 2014 Lincoln Lab. J. 20 52
[6] Vijayakumar D, Jensen O B, Ostendorf R, Westphalen T, Thestrup B 2010 Opt. Express 18 893
Google Scholar
[7] Hecht J 2012 Laser Focus World 48 50
[8] Huang R K, Chann B, Burgess J, Lochman B, Zhou W, Cruz M, Cook R, Dugmore D, Shattuck J, Tayebati R 2015 Proc. SPIE 9730 97300C-1
Google Scholar
[9] Sevian A, Andrusyak O, Ciapurin I, Smirnov V, Venus G, Glebov L 2008 Opt. Lett. 33 384
Google Scholar
[10] Ma H J, Xiao Y, Hu C, Song Y Y, Tang X H 2021 Appl. Opt. 60 8213
Google Scholar
[11] Song Y Y, Yu X, Hu C, Wang P, Ma H J, Tang X H 2021 Appl. Opt. 61 3390
Google Scholar
[12] Wu Z, Yang L, Zhang B 2017 Appl. Opt. 56 1
Google Scholar
[13] Meng H C, Sun T Y, Tan H, Yu J H, Du W C, Tian F, Li J M, Gao S X, Wang X J, Wu D Y 2015 Opt. Express 23 21819
Google Scholar
[14] Zhu Z D, Gou L, Jiang M H, Hui Y L, Lei H, Li Q 2014 Opt. Express 22 17804
Google Scholar
[15] Lang R, Kobayashi K 1980 IEEE J. Quant. Electron. 16 347
Google Scholar
[16] Memon F A, Morichetti F, Arain Z A, Korai U A, Melloni A 2019 Wireless Pers. Commun. 106 2149
Google Scholar
[17] 王安帮 2006 硕士学位论文 (太原: 太原理工大学)
Wang A B 2006 M. S. Dissertation (Taiyuan: Taiyuan University of Science and Technology) (in Chinese)
[18] Binder J O, Cormack G D 1989 IEEE J. Quant. Electron. 25 2255
Google Scholar
[19] Tromborg B, Osmundsen J H, Olesen H 1984 IEEE J. Quant. Electron. QE-20 1023
Google Scholar
[20] Gong H, Liu Z G, Zhou Y L, Zhang W B, Lv T 2014 Appl. Opt. 53 694
Google Scholar
[21] 钟哲强, 杨 磊, 胡小川, 张 彬 2015 中国激光 42 1002010
Google Scholar
Zhong Z Q, Yang L, Hu X C, Zhang B 2015 Chin. J. Lasers 42 1002010
Google Scholar
[22] Yang L, Wu Z, Zhong Z Q, Zhang B 2017 Opt. Commun. 384 30
Google Scholar
[23] 吴肖杰 2018 硕士学位论文 (长春: 长春理工大学)
Wu X J 2018 M. S. Dissertation (Changchun: Changchun University of Science and Technology) (in Chinese)
Catalog
Metrics
- Abstract views: 4968
- PDF Downloads: 94
- Cited By: 0