Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mechanism of radar wave absorption and bandwidth for easy-plane Y2Co17 rare earth soft magnetic composites

Tu Cheng-Fa Zheng Zu-Ying Qiao Liang Hao Hong-Bo Ma Yun-Guo Sun Zhe Wang Hao Wang Tao Li Fa-Shen

Citation:

Mechanism of radar wave absorption and bandwidth for easy-plane Y2Co17 rare earth soft magnetic composites

Tu Cheng-Fa, Zheng Zu-Ying, Qiao Liang, Hao Hong-Bo, Ma Yun-Guo, Sun Zhe, Wang Hao, Wang Tao, Li Fa-Shen
cstr: 32037.14.aps.71.20220665
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Wave absorbing materials are widely used to prevent military equipment from being detected by radar wave and also serve as civil electromagnetic shielding. The absorbing properties of wave absorbing materials are determined by a combination of the electromagnetic parameters and the thickness of the composite material. In the actual case, the theoretically designed reflection loss peak intensity and the bandwidth of wave absorbing materials deviate from the engineered values. There are few reports on the mechanism about the variation of the intensity of the reflection loss absorption peak with thickness and the bandwidth of the reflection loss absorption peak. In this work, based on an interfacial reflection model, the reflective properties of radar wave at the air interface of the absorbing coating are investigated. The dependence of the matching impedance on the matching thickness of the absorbing material is determined, and the matching impedance parameters are further used to design the absorbing composites, which exhibit excellent microwave absorption properties, i.e. an average value of reflection loss is below –10 dB at 4–18 GHz in different thickness wave absorbing materials, and an average value of reflection loss is below –20 dB at 6–18 GHz in different thickness wave absorbing materials. The bandwidth of the reflection loss peak at the matched thickness is discussed in depth in principle based on the interface reflection model, and the theoretical calculations accord with the experimental results.
      Corresponding author: Qiao Liang, qiaoliang@lzu.edu.cn
    • Funds: Project supported by National Key R&D Program of China (Grant No. 2021YFB3501300), the National Natural Science Foundation of China (Grant No. 51731001), and the State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization's Key Research and Development Projects, China.
    [1]

    Lv H, Yang Z, Liu B, Wu G, Lou Z, Fei B, Wu R 2021 Nat. Commun. 12 834Google Scholar

    [2]

    Guan B, Ding D, Wang L, Wu J, Xiong R 2017 Mater. Res. Express 4 056103Google Scholar

    [3]

    Qu B, Zhu C, Li C, Zhang X, Chen Y 2016 ACS Appl. Mater. Interfaces 8 3730Google Scholar

    [4]

    Gao S T, Zhang Y C, Xing H L, Li H X 2020 Chem. Eng. J. 387 124149Google Scholar

    [5]

    Wang Z, Cheng Z, Fang C, Hou X, Xie L 2020 Compos. Part A Appl. Sci. Manuf. 136 105956Google Scholar

    [6]

    Zhang H, Jia Z, Feng A, Zhou Z, Zhang C, Wang K, Liu N, Wu G 2020 Compos. Commun. 19 42Google Scholar

    [7]

    Wang F, Wang N, Han X, Liu D, Wang Y, Cui L, Xu P, Du Y 2019 Carbon 145 701Google Scholar

    [8]

    Wang P, Zhang J, Wang G, Duan B, Wang T, Li F 2020 Appl. Phys. Lett. 116 112403Google Scholar

    [9]

    Han R, Yi H B, Zuo W L, Wang T, Qiao L, Li F S 2012 J. Magn. Magn. Mater. 324 2488Google Scholar

    [10]

    Wu P, Zhang Y, Hao H, Qiao L, Liu X, Wang T, Li F 2022 J. Magn. Magn. Mater. 549 168962Google Scholar

    [11]

    Qiao G, Hu Q, Zhang P, Yang W, Liu Z, Liu S, Wang C, Yang J 2020 J. Alloys Compd. 825 154179Google Scholar

    [12]

    Yang W, Zhang Y, Qiao G, Lai Y, Liu S, Wang C, Han J, Du H, Zhang Y, Yang Y, Hou Y, Yang J B 2018 Acta Materialia 145 331Google Scholar

    [13]

    Yan F, Zong Y, Zhao C, Tan G, Sun Y, Li X, Ren Z, Zheng X 2018 J. Alloys Compd. 742 928Google Scholar

    [14]

    Wang Y, Liu Z, Zhang P, Cai K, Yang W, Han J, Liu S, Wang C, Zou R, Yang J 2021 AIP Adv. 11 015237Google Scholar

    [15]

    Zhuang X, Tan G, Ning M, Qi C, Ge X, Yang Z, Man Q 2021 J. Alloys Compd. 883 160835Google Scholar

    [16]

    Gu X, Tan G, Chen S, Man Q, Chang C, Wang X, Li R W, Che S, Jiang L 2017 J. Magn. Magn. Mater. 424 39Google Scholar

    [17]

    Qiao L, Wang T, Mei Z L, Li X L, Sui W B, Tang L Y, Li F S 2016 Chin. Phys. Lett. 33 027502Google Scholar

    [18]

    Wang T, Han R, Tan G, Wei J, Qiao L, Li F 2012 J. Appl. Phys. 112 104903Google Scholar

    [19]

    Wang T, Wang H D, Tan G G, Li W, Qiao L 2015 IEEE Trans. Magn. 51 1Google Scholar

    [20]

    Liu J R, Itoh M, Machida K I 2003 Appl. Phys. Lett. 83 4017Google Scholar

    [21]

    Singh P, Babbar V K, Razdan A, Puri R K, Goel T C 2000 J. Appl. Phys. 87 4362Google Scholar

  • 图 1  工艺流程示意图(RL表示反射损耗)

    Figure 1.  Sketch map of workmanship (RL, reflection loss).

    图 2  Y2Co17样品XRD图谱

    Figure 2.  XRD patterns of Y2Co17

    图 3  (a) Y2Co17合金磁粉的磁滞回线; (b) 体积分数为30%的Y2Co17/PU复合片状样品的面内、面外磁滞回线

    Figure 3.  (a) Hysteresis loop of the Y2Co17 alloy magnetic powder; (b) in-plane and out-plane hysteresis loop of the Y2Co17 /PU with a volume fraction of 30%.

    图 4  (a) Y2Co17/PU复合材料的磁导率; (b) Y2Co17/PU复合材料的介电常数

    Figure 4.  (a) Complex permeability of Y2Co17/PU composites; (b) complex permittivity of Y2Co17/PU composites.

    图 5  (a) 界面反射相消模型示意图; (b) 电磁波透过物体示意图; (c) Y2Co17/PU-25%在不同厚度下吸收峰所对应的频点

    Figure 5.  (a) Schematic diagram of interface reflection cancellation model; (b) schematic diagram of electromagnetic wave passing through objects; (c) frequency points corresponding to absorption peaks at different thicknesses of Y2Co17/PU-25%.

    图 6  Y2Co17/PU-15%复合物的 (a) RL峰的带宽图和 (b) 四分之一波长的频率依赖性

    Figure 6.  (a) Scheme of bandwidth of RL peak and (b) frequency dependent of quarter-wavelength for Y2Co17/PU-15% composites.

    图 7  (a) Y2Co17/PU-15%复合材料的磁导率; (b) Y2Co17/ PU-15%复合材料的介电常数

    Figure 7.  (a) Complex permeability of Y2Co17/PU composites; (b) complex permittivity of Y2Co17/PU composites.

    图 8  Y2Co17磁粉复合材料的零反射参数(fm, tm)与浓度关系

    Figure 8.  Relationship between zero reflection parameters (fm, tm) and volume concentration of Y2Co17 magnetic powder composites.

    图 9  (a) Y2Co17/PU-15%四分之一波长厚度与频率的关系; (b) Y2Co17/PU-15%阻抗匹配与厚度的关系 ; (c), (d) Y2Co17-15%在不同厚度下吸收峰

    Figure 9.  (a) Quarter wavelength thickness as a function of frequency of Y2Co17-15%; (b) impedance matching versus thickness of Y2Co17-15%; (c), (d) absorption peaks at different thicknesses of Y2Co17-15%.

    图 10  指定点(RL)1 = –10 dB时, Y2Co17/PU-15%带宽的测量值和计算值随频率的变化

    Figure 10.  Measured and calculated bandwidth at (RL)1 = –10 dB for Y2Co17/PU-15% composite under various frequencies.

    表 1  Y2Co17磁粉复合物的零反射条件与体积浓度的关系

    Table 1.  Relationship between zero reflection condition and volume concentration of Y2Co17 magnetic powder composites.

    Vc/%零反射条件$\sqrt{ {\varepsilon }_{\mathrm{r} }{\mu }_{\mathrm{r} } }$$\sqrt{ {\varepsilon }_{\mathrm{r} }/{\mu }_{\mathrm{r} } }$RL/dB
    fm/GHztm/mm
    1518.001.133.663.72–59.60
    203.143.887.013.72–52.00
    251.853.9510.204.04–60.70
    300.9955.0215.004.95–40.56
    DownLoad: CSV

    表 2  指定点(RL)1 = –10 dB时, 带宽的测量值和计算值

    Table 2.  Calculated and measured values of bandwidth for the specified point (RL)1 = –10 dB.

    f/
    GHz
    t/
    mm
    (RL)min/
    dB
    $\varPi$$\left| \dfrac{\mathrm{d}\Delta \theta}{ \mathrm{d}f} \right|$$\varDelta_{计算}$/
    GHz
    $\varDelta_{测量} $/
    GHz
    6.62.4–38.090.540.542.882.50
    6.02.7–27.40.560.632.342.01
    5.3363–23.040.580.721.941.78
    4.7993.3–20.280.600.781.701.68
    4.353.6–18.420.620.881.421.41
    4.033.9–17.260.640.981.221.25
    3.724.2–16.010.661.11.020.99
    3.414.5–15.260.671.170.920.92
    DownLoad: CSV
    Baidu
  • [1]

    Lv H, Yang Z, Liu B, Wu G, Lou Z, Fei B, Wu R 2021 Nat. Commun. 12 834Google Scholar

    [2]

    Guan B, Ding D, Wang L, Wu J, Xiong R 2017 Mater. Res. Express 4 056103Google Scholar

    [3]

    Qu B, Zhu C, Li C, Zhang X, Chen Y 2016 ACS Appl. Mater. Interfaces 8 3730Google Scholar

    [4]

    Gao S T, Zhang Y C, Xing H L, Li H X 2020 Chem. Eng. J. 387 124149Google Scholar

    [5]

    Wang Z, Cheng Z, Fang C, Hou X, Xie L 2020 Compos. Part A Appl. Sci. Manuf. 136 105956Google Scholar

    [6]

    Zhang H, Jia Z, Feng A, Zhou Z, Zhang C, Wang K, Liu N, Wu G 2020 Compos. Commun. 19 42Google Scholar

    [7]

    Wang F, Wang N, Han X, Liu D, Wang Y, Cui L, Xu P, Du Y 2019 Carbon 145 701Google Scholar

    [8]

    Wang P, Zhang J, Wang G, Duan B, Wang T, Li F 2020 Appl. Phys. Lett. 116 112403Google Scholar

    [9]

    Han R, Yi H B, Zuo W L, Wang T, Qiao L, Li F S 2012 J. Magn. Magn. Mater. 324 2488Google Scholar

    [10]

    Wu P, Zhang Y, Hao H, Qiao L, Liu X, Wang T, Li F 2022 J. Magn. Magn. Mater. 549 168962Google Scholar

    [11]

    Qiao G, Hu Q, Zhang P, Yang W, Liu Z, Liu S, Wang C, Yang J 2020 J. Alloys Compd. 825 154179Google Scholar

    [12]

    Yang W, Zhang Y, Qiao G, Lai Y, Liu S, Wang C, Han J, Du H, Zhang Y, Yang Y, Hou Y, Yang J B 2018 Acta Materialia 145 331Google Scholar

    [13]

    Yan F, Zong Y, Zhao C, Tan G, Sun Y, Li X, Ren Z, Zheng X 2018 J. Alloys Compd. 742 928Google Scholar

    [14]

    Wang Y, Liu Z, Zhang P, Cai K, Yang W, Han J, Liu S, Wang C, Zou R, Yang J 2021 AIP Adv. 11 015237Google Scholar

    [15]

    Zhuang X, Tan G, Ning M, Qi C, Ge X, Yang Z, Man Q 2021 J. Alloys Compd. 883 160835Google Scholar

    [16]

    Gu X, Tan G, Chen S, Man Q, Chang C, Wang X, Li R W, Che S, Jiang L 2017 J. Magn. Magn. Mater. 424 39Google Scholar

    [17]

    Qiao L, Wang T, Mei Z L, Li X L, Sui W B, Tang L Y, Li F S 2016 Chin. Phys. Lett. 33 027502Google Scholar

    [18]

    Wang T, Han R, Tan G, Wei J, Qiao L, Li F 2012 J. Appl. Phys. 112 104903Google Scholar

    [19]

    Wang T, Wang H D, Tan G G, Li W, Qiao L 2015 IEEE Trans. Magn. 51 1Google Scholar

    [20]

    Liu J R, Itoh M, Machida K I 2003 Appl. Phys. Lett. 83 4017Google Scholar

    [21]

    Singh P, Babbar V K, Razdan A, Puri R K, Goel T C 2000 J. Appl. Phys. 87 4362Google Scholar

Metrics
  • Abstract views:  6232
  • PDF Downloads:  171
  • Cited By: 0
Publishing process
  • Received Date:  11 April 2022
  • Accepted Date:  04 May 2022
  • Available Online:  31 August 2022
  • Published Online:  20 September 2022

/

返回文章
返回
Baidu
map