-
Quantum satellite communication is a research hotspot and frontier in the field of communication. It has the advantages of ideal information security and wide coverage, which is of great significance in constructing a global quantum satellite wide area network. However, problems such as network reliability, security and routing relay still need to be improved when transmitting information over long distances. In this paper, the spider web is used as a unique natural communication topology to transform the natural spider web into an artificial spider web topology. The quantum information transmission adopts N-order quantum teleportation routing scheme, and the transmission delay is basically unchanged. On this basis, the spider web topology quantum wide area network transmission model is constructed. The bit error rate, throughput rate and security key generation rate of the network model are simulated and analyzed. Taking 9-node ring network and 9-node cobweb for example, the quantitative analysis and qualitative analysis are both conducted in this paper. The results show that the cobweb topology has higher reliability. When the average power spectral density of the noise is given and there is no relay, the bit error rate increases with the transmission distance increasing, so the introduction of relay should be considered. When the transmission distance and noise power spectral density are constant, the bit error rate decreases with the number of relay nodes increasing, so the appropriate routing process should be selected in the spider web topology. With the increase of the probability of transmitting entangled photon pairs, the throughput rate gradually increases. With the increase of transmission delay in the network, the throughput rate Q gradually decreases. However, the transmission delay is basically unchanged in this routing scheme, and the transmission delay of cobweb structure is very small. Therefore, the throughput rate of the topology quantum WAN of cobweb network based on N-order quantum teleportation proposed in this paper will not significantly decrease. When the transmission distance of quantum information increases, the network key generation rate decreases gradually. With the increase of the number of network relay nodes, the key generation rate increases gradually. Thus, it can be seen that using cobweb topology and N-order quantum teleportation routing scheme to construct a quantum satellite WAN has good advantages.
-
Keywords:
- spider web topology /
- N-order quantum teleportation routing scheme /
- quantum satellite wide area network
[1] 彭承志, 潘建伟 2016 中国科学院院刊 31 1096Google Scholar
Peng Z C, Pan J W 2016 Bull. Chin. Acad. Sci. 31 1096Google Scholar
[2] 朱武 2016 硕士学位论文 (北京: 北京邮电大学)
Zhu W 2016 M. S. Thesis (Beijing: Beijing University of Posts and Telecommunications) (in Chinese)
[3] Lo H K, Curty M, Qi B 2012 Phys. Rev. Lett. 108 130503Google Scholar
[4] Cao Y, Li Y H, Yang K X, Jiang Y F, Li S L, Hu X L, Maimaiti A, Li C L, Zhang W J, Sun Q C, Liu W Y, Xiao J, Liao S K, Ren J G, Li H, You L X, Wang Z, Yin J, Lu C Y, Wang X B, Zhang Q, Peng C Z, Pan J W 2020 Phys. Rev. Lett. 125 260503Google Scholar
[5] Yin J, Li Y H, Liao S K, Meng Y, Cao Y, Zhang L, Ren J G, Cai W Q, Liu W Y, Li S L, Shu R, Huang Y M, Deng L, Li L, Zhang Q, Liu N L, Chen Y A, Lu C Y, Wang X B, Xu F H, Wang J Y, Peng C Z, Artur K. Ekert, Pan J W 2020 Nature 582 501
[6] 张志会, 马连轶 2018 中国科技论坛 34 1Google Scholar
Zhang Z H, Ma L Y 2018 Forum Sci. Tech. Chin. 34 1Google Scholar
[7] Liao S K, Cai W Q 2018 Phys. Rev. Lett. 120 030501Google Scholar
[8] 周小清, 邬云文, 赵晗 2011 60 040304Google Scholar
Zhou X Q, Wu Y W, Zhao H 2011 Acta Phys. Sin. 60 040304Google Scholar
[9] 连涛, 聂敏 2012 光子学报 41 1251Google Scholar
Lian T, Nie M 2012 Acta Photo. Sin. 41 1251Google Scholar
[10] 刘晓慧, 聂敏, 裴昌幸 2013 62 200304Google Scholar
Liu X H, Nie M, Pei C X 2013 Acta Phys. Sin. 62 200304Google Scholar
[11] 聂敏, 郭建伟, 卫容宇, 杨光, 张美玲, 孙爱晶, 裴昌幸 2021 激光与光电子学进展 57 1
Nie M, Guo J W, Wei R Y, Yang G, Zhang M L, Sun A J, Pei C X 2021 Laser & Optoelect. Prog. 57 1
[12] Chen Y A, Zhang Q, Chen T Y, Cai W Q, Liao S K, Zhang J, Chen K, Yin J, Ren J G, Chen Z, Han S L, Yu Q, Liang K, Zhou F, Yuan X, Zhao M S, Wang T Y, Jiang X, Zhang L, Liu W Y, Li Y, Shen Q, Cao Y, Lu C Y, Shu R, Wang J Y, Li L, Liu N L, Xu F H, Wang X B, Peng C Z, Pan J W 2021 Nature 589 214
[13] 卓春晖, 蒋平, 王昌河, 郭聪 2006 四川动物 26 898Google Scholar
Zhuo C H, Jiang P, Wang C H, Guo C 2006 Sichuan J. Zoo 26 898Google Scholar
[14] 卓春晖 2007 硕士学位论文 (成都: 四川大学)
Zhuo C H 2007 M. S. Thesis (Chengdu: Sichuan University) (in Chinese)
[15] Liu X S, Zhang L, Lin J W 2010 First International Conference on Pervasive Computing, Signal Processing and Applications Harbin, China, September 17–19, 2010 p224
[16] 李彬 2013 硕士学位论文 (西安: 西安电子科技大学)
Li B 2013 M.S. Thesis (Xi’an: Xidian University) (in Chinese)
[17] 赵振峰 2013 硕士学位论文 (哈尔滨: 哈尔滨工业大学)
Zhao Z F 2013 M. S. Thesis (Harbin: Harbin Institute of Technology) (in Chinese)
[18] 刘晓胜, 张良, 周岩, 林建伟, 徐殿国 2012 中国电机工程学报 32 142Google Scholar
Liu X S, Zhang L, Zhou Y, Lin J W, Xu D G 2012 Proc. CSEE 32 142Google Scholar
[19] Bouwmeester D, Pan J W, Mattle K, Manfred E, Weinfurter H, Zeilinger A 1997 Nature 390 575Google Scholar
[20] Chen P, Deng F G, Long G L 2006 Chin. Phys. 15 2228Google Scholar
[21] 朱秋立, 石磊, 魏家华, 朱宇, 杨汝, 赵顾颢 2018 激光与光电子学进展 55 41
Zhu Q L, Shi L, Wei J H, Zhu Y, Yang R, Zhao G H 2018 Laser & Optoelext. Prog. 55 41
[22] 朱畅华, 裴昌幸, 马怀新, 于晓飞 2006 西安电子科技大学学报 6 839
Zhu C H, Pei C X, Ma H X, Yu X F 2006 J. Xidian. Univ. 6 839
[23] 李铁飞, 杨峰, 李伟, 崔树民 2015 电讯技术 55 959Google Scholar
Li T F, Yang F, Li W, Cui S M 2015 Tele. Engin. 55 959Google Scholar
-
表 1 已知测量结果后的量子门操作
Table 1. Quantum gate operation after known measurement results.
$ {A}_{1} $异或$ {D}_{1} $ $ {A}_{2} $异或$ {D}_{2} $ 量子门操作 0 0 无 0 1 X门 1 0 Z门 1 1 X门和Z门 表 2 已知测量结果后的量子门操作
Table 2. Quantum gate operation after known measurement results.
$ {A}_{1} $异或$ {D}_{1} $异或$ {G}_{1} $ $ {A}_{2} $异或$ {D}_{2} $异或$ {G}_{2} $ 量子门操作 0 0 无 0 1 X门 1 0 Z门 1 1 X门和Z门 表 3 量子信息传输误码率各参量含义
Table 3. Meaning of parameters of bit error rate in quantum information transmission.
L n λ $ {f}_{\rm{T}} $ $ {f}_{\rm{R}} $ $ {F}_{\rm{T}} $ $ {F}_{\rm{R}} $ $ {L}_{\rm{P}} $ 星地间传输距离 中继节点个数 光子波长 发送端望远镜孔径 接收端望远镜孔径 发端望远镜传输因子 收端望远镜传输因子 链路损耗 -
[1] 彭承志, 潘建伟 2016 中国科学院院刊 31 1096Google Scholar
Peng Z C, Pan J W 2016 Bull. Chin. Acad. Sci. 31 1096Google Scholar
[2] 朱武 2016 硕士学位论文 (北京: 北京邮电大学)
Zhu W 2016 M. S. Thesis (Beijing: Beijing University of Posts and Telecommunications) (in Chinese)
[3] Lo H K, Curty M, Qi B 2012 Phys. Rev. Lett. 108 130503Google Scholar
[4] Cao Y, Li Y H, Yang K X, Jiang Y F, Li S L, Hu X L, Maimaiti A, Li C L, Zhang W J, Sun Q C, Liu W Y, Xiao J, Liao S K, Ren J G, Li H, You L X, Wang Z, Yin J, Lu C Y, Wang X B, Zhang Q, Peng C Z, Pan J W 2020 Phys. Rev. Lett. 125 260503Google Scholar
[5] Yin J, Li Y H, Liao S K, Meng Y, Cao Y, Zhang L, Ren J G, Cai W Q, Liu W Y, Li S L, Shu R, Huang Y M, Deng L, Li L, Zhang Q, Liu N L, Chen Y A, Lu C Y, Wang X B, Xu F H, Wang J Y, Peng C Z, Artur K. Ekert, Pan J W 2020 Nature 582 501
[6] 张志会, 马连轶 2018 中国科技论坛 34 1Google Scholar
Zhang Z H, Ma L Y 2018 Forum Sci. Tech. Chin. 34 1Google Scholar
[7] Liao S K, Cai W Q 2018 Phys. Rev. Lett. 120 030501Google Scholar
[8] 周小清, 邬云文, 赵晗 2011 60 040304Google Scholar
Zhou X Q, Wu Y W, Zhao H 2011 Acta Phys. Sin. 60 040304Google Scholar
[9] 连涛, 聂敏 2012 光子学报 41 1251Google Scholar
Lian T, Nie M 2012 Acta Photo. Sin. 41 1251Google Scholar
[10] 刘晓慧, 聂敏, 裴昌幸 2013 62 200304Google Scholar
Liu X H, Nie M, Pei C X 2013 Acta Phys. Sin. 62 200304Google Scholar
[11] 聂敏, 郭建伟, 卫容宇, 杨光, 张美玲, 孙爱晶, 裴昌幸 2021 激光与光电子学进展 57 1
Nie M, Guo J W, Wei R Y, Yang G, Zhang M L, Sun A J, Pei C X 2021 Laser & Optoelect. Prog. 57 1
[12] Chen Y A, Zhang Q, Chen T Y, Cai W Q, Liao S K, Zhang J, Chen K, Yin J, Ren J G, Chen Z, Han S L, Yu Q, Liang K, Zhou F, Yuan X, Zhao M S, Wang T Y, Jiang X, Zhang L, Liu W Y, Li Y, Shen Q, Cao Y, Lu C Y, Shu R, Wang J Y, Li L, Liu N L, Xu F H, Wang X B, Peng C Z, Pan J W 2021 Nature 589 214
[13] 卓春晖, 蒋平, 王昌河, 郭聪 2006 四川动物 26 898Google Scholar
Zhuo C H, Jiang P, Wang C H, Guo C 2006 Sichuan J. Zoo 26 898Google Scholar
[14] 卓春晖 2007 硕士学位论文 (成都: 四川大学)
Zhuo C H 2007 M. S. Thesis (Chengdu: Sichuan University) (in Chinese)
[15] Liu X S, Zhang L, Lin J W 2010 First International Conference on Pervasive Computing, Signal Processing and Applications Harbin, China, September 17–19, 2010 p224
[16] 李彬 2013 硕士学位论文 (西安: 西安电子科技大学)
Li B 2013 M.S. Thesis (Xi’an: Xidian University) (in Chinese)
[17] 赵振峰 2013 硕士学位论文 (哈尔滨: 哈尔滨工业大学)
Zhao Z F 2013 M. S. Thesis (Harbin: Harbin Institute of Technology) (in Chinese)
[18] 刘晓胜, 张良, 周岩, 林建伟, 徐殿国 2012 中国电机工程学报 32 142Google Scholar
Liu X S, Zhang L, Zhou Y, Lin J W, Xu D G 2012 Proc. CSEE 32 142Google Scholar
[19] Bouwmeester D, Pan J W, Mattle K, Manfred E, Weinfurter H, Zeilinger A 1997 Nature 390 575Google Scholar
[20] Chen P, Deng F G, Long G L 2006 Chin. Phys. 15 2228Google Scholar
[21] 朱秋立, 石磊, 魏家华, 朱宇, 杨汝, 赵顾颢 2018 激光与光电子学进展 55 41
Zhu Q L, Shi L, Wei J H, Zhu Y, Yang R, Zhao G H 2018 Laser & Optoelext. Prog. 55 41
[22] 朱畅华, 裴昌幸, 马怀新, 于晓飞 2006 西安电子科技大学学报 6 839
Zhu C H, Pei C X, Ma H X, Yu X F 2006 J. Xidian. Univ. 6 839
[23] 李铁飞, 杨峰, 李伟, 崔树民 2015 电讯技术 55 959Google Scholar
Li T F, Yang F, Li W, Cui S M 2015 Tele. Engin. 55 959Google Scholar
Catalog
Metrics
- Abstract views: 5036
- PDF Downloads: 56
- Cited By: 0