Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Scheme of directly measuring quantum density matrix by δ-quench method

Wen Yong-Li Zhang Shan-Chao Yan Hui Zhu Shi-Liang

Citation:

Scheme of directly measuring quantum density matrix by δ-quench method

Wen Yong-Li, Zhang Shan-Chao, Yan Hui, Zhu Shi-Liang
科大讯飞翻译 (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Density matrix, which characterizes a quantum state, plays an important role in quantum mechanics. Recently, a method which can directly measure the elements of a density matrix was proposed. Compared with the conventional quantum state tomography which is widely used to reconstruct the density matrix, this measurement method has the advantages of directness and simplicity. However, this direct measurement method relies on an extra pointer space. The addition of this extra pointer can increase the complexity of an experiment. In this paper, we first review previous work on direct measurement, then we propose a scheme to directly measure the density matrix based on δ-quench, which is also a direct measurement method but needs no additional pointer. This proposal reduces the complexity of the measuring system and further simplifies the measurement. We propose two schemes to realize this δ-quench measurement, then analyse their superiorities in different situations of measurement. An experiment to measure photon's density matrix is also designed.
      Corresponding author: Zhu Shi-Liang, slzhu@scnu.edu.cn
    • Funds: Project supported by the Key-Area Research and Development Program of Guangdong Province, China (Grant No. 2019B030330001), the Key Project of Science and Technology of Guangzhou, China (Grant Nos. 201804020055, 2019050001), the National Key R&D Program of China (Grant No. 2016YFA0301803), and the National Natural Science Foundation of China (Grant No. 12074180)
    [1]

    James D F V, Kwiat P G, Munro W J, White A G 2001 Phys. Rev. A 64 052312Google Scholar

    [2]

    Schmied R 2016 J. Mod. Opt. 63 1744Google Scholar

    [3]

    Lorenzo A D 2013 Phys. Rev. Lett. 110 010404Google Scholar

    [4]

    Lorenzo A D 2013 Phys. Rev. A 88 042114Google Scholar

    [5]

    Bent N, Qassim H, Tahir A A, Sych D, Leuchs G, Sánchez-Soto L L, Karimi E, Boyd R W 2015 Phys. Rev. X 5 041006

    [6]

    Lundeen J S, Sutherland B, Patel A, Stewart C, Bamber C 2011 Nature 474 188Google Scholar

    [7]

    Aharonov Y, Albert D Z, Vaidman L 1988 Phys. Rev. Lett. 60 1351Google Scholar

    [8]

    Dressel J, Malik M, Miatto F M, Jordan A N, Boyd R W 2014 Rev. Mod. Phys. 86 307Google Scholar

    [9]

    Ritchie N W M, Story J G, Hulet R G 1991 Phys. Rev. Lett. 66 1107Google Scholar

    [10]

    Yang G, Lian B W, Nie M 2016 Chin. Phys. B 25 080310Google Scholar

    [11]

    Liao X P, Fang M F, Fang J S, Zhu Q Q 2013 Chin. Phys. B 23 020304

    [12]

    黄江 2017 66 010301Google Scholar

    Huang J 2017 Acta Phys. Sin. 66 010301Google Scholar

    [13]

    王美姣, 夏云杰 2015 64 240303Google Scholar

    Wang M J, Xia Y J 2015 Acta Phys. Sin. 64 240303Google Scholar

    [14]

    Salvail J Z, Agnew M, Johnson A S, Bolduc E 2013 Nat. Photonics 7 316Google Scholar

    [15]

    Malik M, Mirhosseini M, Lavery M P J, Leach J, Padgett M J, Boyd R W 2014 Nat. Commun. 5 3115Google Scholar

    [16]

    Kocsis S, Braverman B, Ravets S, Stevens M J, Mirin R P, Shalm L K, Steinberg A M 2011 Science 332 1170Google Scholar

    [17]

    Lundeen J S, Bamber C 2012 Phys. Rev. Lett. 108 070402Google Scholar

    [18]

    Boldu E, Gariepy G, Leach J 2016 Nat. Commun. 7 10439Google Scholar

    [19]

    Qin L, Xu L, Feng W, Li X Q 2017 New J. Phys. 19 033036Google Scholar

    [20]

    Bamber C, Lundeen J S 2014 Phys. Rev. Lett. 112 070405Google Scholar

    [21]

    Shojaee E, Jackson C S, Riofrío C A, Kalev A, Deutsch I H 2018 Phys. Rev. Lett. 121 130404Google Scholar

    [22]

    Fischbach J, Freyberger M 2012 Phys. Rev. A 86 052110Google Scholar

    [23]

    Mirhosseini M, Magana-Loaiza O S, Rafsanjani S M H, Boyd R W 2014 Phys. Rev. Lett. 113 090402Google Scholar

    [24]

    Vallone G, Dequal D 2016 Phys. Rev. Lett. 116 040502Google Scholar

    [25]

    Denkmayr T, Geppert H, Lemmel H, Waegell M, Dressel J, Hasegawa Y, Sponar S 2018 Phys. Rev. Lett. 118 010402

    [26]

    Zhang C R, Hu M J, Xiang G Y, Zhang Y S, Li C F, Guo G C 2020 Chin. Phys. Lett. 37 080301Google Scholar

    [27]

    Zhang C R, Hu M J, Hou Z B, Tang J F, Zhu J, Xiang G Y, Li C F, Guo G C, Zhang Y S 2020 Phys. Rev. A 101 012119Google Scholar

    [28]

    Pan W W, Xu X Y, Kedem Y, Wang Q Q, Chen Z, Jan M, Su K, Xu J S, Han Y J, Li C F, Guo G C 2019 Phys. Rev. Lett. 123 150402Google Scholar

    [29]

    Thekkadath G S, Giner L, Chalich Y, Horton M J, Banker J, Lundeen J S 2016 Phys. Rev. Lett. 117 120401Google Scholar

    [30]

    Calderaro L, Foletto G, Dequal D, Villoresi P, Vallone G 2018 Phys. Rev. Lett. 121 230501Google Scholar

    [31]

    Zhang S, Zhou Y, Mei Y, Liao K, Wen Y L, Li J, Zhang X D, Du S, Yan H, Zhu S L 2019 Phys. Rev. Lett. 123 190402Google Scholar

  • 图 1  (a) 文献[30]中有指针直接测量密度矩阵的方法; (b) 本文提出的无指针直接测量密度矩阵的方法

    Figure 1.  (a) Schematic of direct measurement method of the density matrix with pointer in Ref. [30]; (b) our proposal of direct measurement method of the density matrix without pointer.

    图 2  (a) 文献[30]提出的有指针直接测量密度矩阵的实验方案; (b) 本文提出的无指针直接测量密度矩阵实验方案

    Figure 2.  (a) Schematic of direct measurement of the density matrix with pointer in Ref. [30]; (b) experimental proposal of our direct measurement without pointer.

    Baidu
  • [1]

    James D F V, Kwiat P G, Munro W J, White A G 2001 Phys. Rev. A 64 052312Google Scholar

    [2]

    Schmied R 2016 J. Mod. Opt. 63 1744Google Scholar

    [3]

    Lorenzo A D 2013 Phys. Rev. Lett. 110 010404Google Scholar

    [4]

    Lorenzo A D 2013 Phys. Rev. A 88 042114Google Scholar

    [5]

    Bent N, Qassim H, Tahir A A, Sych D, Leuchs G, Sánchez-Soto L L, Karimi E, Boyd R W 2015 Phys. Rev. X 5 041006

    [6]

    Lundeen J S, Sutherland B, Patel A, Stewart C, Bamber C 2011 Nature 474 188Google Scholar

    [7]

    Aharonov Y, Albert D Z, Vaidman L 1988 Phys. Rev. Lett. 60 1351Google Scholar

    [8]

    Dressel J, Malik M, Miatto F M, Jordan A N, Boyd R W 2014 Rev. Mod. Phys. 86 307Google Scholar

    [9]

    Ritchie N W M, Story J G, Hulet R G 1991 Phys. Rev. Lett. 66 1107Google Scholar

    [10]

    Yang G, Lian B W, Nie M 2016 Chin. Phys. B 25 080310Google Scholar

    [11]

    Liao X P, Fang M F, Fang J S, Zhu Q Q 2013 Chin. Phys. B 23 020304

    [12]

    黄江 2017 66 010301Google Scholar

    Huang J 2017 Acta Phys. Sin. 66 010301Google Scholar

    [13]

    王美姣, 夏云杰 2015 64 240303Google Scholar

    Wang M J, Xia Y J 2015 Acta Phys. Sin. 64 240303Google Scholar

    [14]

    Salvail J Z, Agnew M, Johnson A S, Bolduc E 2013 Nat. Photonics 7 316Google Scholar

    [15]

    Malik M, Mirhosseini M, Lavery M P J, Leach J, Padgett M J, Boyd R W 2014 Nat. Commun. 5 3115Google Scholar

    [16]

    Kocsis S, Braverman B, Ravets S, Stevens M J, Mirin R P, Shalm L K, Steinberg A M 2011 Science 332 1170Google Scholar

    [17]

    Lundeen J S, Bamber C 2012 Phys. Rev. Lett. 108 070402Google Scholar

    [18]

    Boldu E, Gariepy G, Leach J 2016 Nat. Commun. 7 10439Google Scholar

    [19]

    Qin L, Xu L, Feng W, Li X Q 2017 New J. Phys. 19 033036Google Scholar

    [20]

    Bamber C, Lundeen J S 2014 Phys. Rev. Lett. 112 070405Google Scholar

    [21]

    Shojaee E, Jackson C S, Riofrío C A, Kalev A, Deutsch I H 2018 Phys. Rev. Lett. 121 130404Google Scholar

    [22]

    Fischbach J, Freyberger M 2012 Phys. Rev. A 86 052110Google Scholar

    [23]

    Mirhosseini M, Magana-Loaiza O S, Rafsanjani S M H, Boyd R W 2014 Phys. Rev. Lett. 113 090402Google Scholar

    [24]

    Vallone G, Dequal D 2016 Phys. Rev. Lett. 116 040502Google Scholar

    [25]

    Denkmayr T, Geppert H, Lemmel H, Waegell M, Dressel J, Hasegawa Y, Sponar S 2018 Phys. Rev. Lett. 118 010402

    [26]

    Zhang C R, Hu M J, Xiang G Y, Zhang Y S, Li C F, Guo G C 2020 Chin. Phys. Lett. 37 080301Google Scholar

    [27]

    Zhang C R, Hu M J, Hou Z B, Tang J F, Zhu J, Xiang G Y, Li C F, Guo G C, Zhang Y S 2020 Phys. Rev. A 101 012119Google Scholar

    [28]

    Pan W W, Xu X Y, Kedem Y, Wang Q Q, Chen Z, Jan M, Su K, Xu J S, Han Y J, Li C F, Guo G C 2019 Phys. Rev. Lett. 123 150402Google Scholar

    [29]

    Thekkadath G S, Giner L, Chalich Y, Horton M J, Banker J, Lundeen J S 2016 Phys. Rev. Lett. 117 120401Google Scholar

    [30]

    Calderaro L, Foletto G, Dequal D, Villoresi P, Vallone G 2018 Phys. Rev. Lett. 121 230501Google Scholar

    [31]

    Zhang S, Zhou Y, Mei Y, Liao K, Wen Y L, Li J, Zhang X D, Du S, Yan H, Zhu S L 2019 Phys. Rev. Lett. 123 190402Google Scholar

Metrics
  • Abstract views:  5069
  • PDF Downloads:  69
  • Cited By: 0
Publishing process
  • Received Date:  05 February 2021
  • Accepted Date:  06 March 2021
  • Available Online:  22 May 2021
  • Published Online:  05 June 2021

/

返回文章
返回
Baidu
map