Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical simulation study of surface enhancement coherent anti-Stokes Raman scattering reinforced substrate

Li Jian-Kang Li Rui

Citation:

Numerical simulation study of surface enhancement coherent anti-Stokes Raman scattering reinforced substrate

Li Jian-Kang, Li Rui
PDF
HTML
Get Citation
  • Plasma nanostructures are of particular significance for serving as a substrate for spectroscopic detection and identification of individual molecules. By combining the excitation wavelength of the molecule with the resonance wavelength of the nanostructure, the sensitive single-molecule Raman detection can be achieved. A high and stable plasma substrate for coherent anti-Stokes Raman scattering(CARS) is very useful for developing the surface-enhanced coherent anti-Stokes Raman scattering (SECARS). In the plasma nanostructures, the strong coupling of plasmonic nanoparticles with an inter-particle gap smaller than the diameter of the individual nanoparticles results in the hybridization of the optical properties of these individual nanoparticles. There are also the charge transfer plasmons(CTP) appearing in conductive bridging nanoparticles. Their unique properties make linked nanosystems a suitable candidate for building artificial molecules, nanomotors, sensors, and other optoelectronic devices. In this work, we, starting from reality, theoretically design a new linked nanosystem SECARS substrate where Fano resonance can be generated by the plasmon hybridization (PH) model resonance and the charge transfer plasmon resonance. The introduction of charge transfer plasma improves the tunability of structural resonance. By adjusting the conductivity of the conductive junction, the wavelength of the charge transfer plasma resonance can be easily adjusted to change the wavelength position of the Fano resonance. The data obtained by numerical simulation of the Raman mode at 1557 cm–1 of L-tryptophan when a 1064 nm light source is used as the pump light show that this spatially symmetrical structure can generate multiple high-enhancement hot spots that do not depend on the polarization direction of the incident light. Ordinary CARS signal can generally be enhanced by 1012, and its maximum can reach 1014. Due to the ultrastrong field enhancement and insensitive-to-polarization, this method of using charge transfer plasma to design a substrate can be used in the practical substrate of SECARS and provide new ideas for designing other nonlinear optical processes such as four wave mixing and stimulated Raman scattering.
      Corresponding author: Li Rui, rli@dlut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51972039), the Liaoning Revitalization Talents Program, China (Grant No. XLYC1902122), and the Fundamental Research Funds for the Central Universities (Grant Nos. DUT19LK19, DUT20YG132)
    [1]

    Minck R W, Terhune R W, Rado W G 1963 Appl. Phys. Lett. 3 181

    [2]

    Begley R F, Harvey A B, Byer R L 1974 Appl. Phys. Lett. 25 387Google Scholar

    [3]

    Duncan M D, Reintjes J, Manuccia T J 1982 Opt. Lett. 7 350Google Scholar

    [4]

    Shi K, Li H, Xu Q, Psaltis D, Liu Z 2010 Phys. Rev. Lett. 104 093902Google Scholar

    [5]

    刘双龙, 刘伟, 陈丹妮, 屈军乐, 牛憨笨 2016 65 064204Google Scholar

    Liu S L, Liu W, Chen D N, Qu J L, Niu H B, 2016 Acta Phys. Sin. 65 064204Google Scholar

    [6]

    Steuwe C, Kaminski C F, Baumberg J J, Mahajan S 2011 Nano Lett. 11 5339Google Scholar

    [7]

    Krafft C, Dietzek B, Schmitt M, Popp J 2012 J Biomed. Opt. 17 040801Google Scholar

    [8]

    Koo T W, Chan S, Berlin A A 2005 Opt. Lett. 30 1024Google Scholar

    [9]

    Chew H, Wang D, Kerker M 1984 J. Opt. Soc. Am. B: Opt. Phys. 1 56Google Scholar

    [10]

    Addison C J, Konorov S O, Brolo A G, Blades M W, Turner R F B 2009 J. Phys.Chem. C 113 3586Google Scholar

    [11]

    Dmitri V V, Alexander M S, Xia H, Kai W, Pankaj K J, Elango M, Steven E W, George W, Alexei V S, Marlan O S 2012 Sci. Rep. 2 891Google Scholar

    [12]

    Shutov A D, Yi Z, Wang J, Sinyukov A M, He Z, Tang C, Chen J, Ocola E J, Laane J, Sokolov A V, Voronine D V, Scully M O 2018 ACS Photonics 5 4960Google Scholar

    [13]

    Prodan E, Nordlander P 2004 J. Chem. Phys. 120 5444Google Scholar

    [14]

    Halas N J, Lal S, Wei-Shun C, Link S, Nordlander P 2011 Chem. Rev. 111 3913Google Scholar

    [15]

    Fontana J, Charipar N, Flom S R, Naciri J, Piqué A, Ratna B R 2016 ACS Photonics 3 904Google Scholar

    [16]

    Fontana J, Ratna B R 2014 Appl. Phys. Lett. 105 011107Google Scholar

    [17]

    Huang Y, Ma L, Hou M, Xie Z, Zhang Z 2016 Phys. Chem. Chem. Phys. 18 2319Google Scholar

    [18]

    Liu L, Wang Y, Fang Z, Zhao K 2013 J. Chem. Phys. 139 064310Google Scholar

    [19]

    Pérez-González O, Zabala N, Borisov A G, Halas N J, Nordlander P, Aizpurua J 2010 Nano Lett. 10 3090Google Scholar

    [20]

    Zhang Y, Wen F, Zhen Y R, Nordlander P, Halas N J 2013 Proc. Natl. Acad. Sci. U. S. A. 110 9215Google Scholar

    [21]

    Zhang Y, Zhen Y R, Neumann O, Day J K, Nordlander P, Halas N J 2014 Nat. Commun. 5 4424Google Scholar

    [22]

    He J N, Fan C Z, Ding P, Zhu S M, Liang E J 2016 Sci. Rep. 6 20777Google Scholar

    [23]

    Kim K H, Rim W S 2019 Appl. Phys. A 125 1

    [24]

    Arpan D, Erik M V 2020 JEOS:RP 16 1Google Scholar

    [25]

    Tian M, Zhao Y, Wan M, Ji P, Li Y, Song Y, Yuan S, Zhou F, He J, Ding P 2018 Phys. Lett. A. 382 3187Google Scholar

    [26]

    Maiti N, Thomas S, Jacob J A, Chadha R, Mukherjee T, Kapoor S 2012 J. Colloid Interface Sci. 380 141Google Scholar

    [27]

    李亚琴, 简国树, 吴世法 2006 中国光学快报(英文版) 4 671

    li Y Q, Jian G S, Wu S F, 2006 Chin. Opt. Lett. 4 671

    [28]

    Hentschel M, Saliba M, Vogelgesang R, Giessen H, Alivisatos A P, Liu N 2010 Nano Lett. 10 2721Google Scholar

    [29]

    Hentschel M, Dregely D, Vogelgesang R, Giessen H, Liu N 2011 ACS Nano 5 2042Google Scholar

    [30]

    Encina E R, Coronado E A 2011 J. Phys. Chem. C 115 15908Google Scholar

    [31]

    Lovera A, Gallinet B, Nordlander P, Martin O J F 2013 ACS Nano 7 4527Google Scholar

  • 图 1  基底的结构示意图 (a)与其对应的参数示意图(b)

    Figure 1.  Sketch of the structure(a) with the defined parameters and coordinate axis(b).

    图 2  圆盘的参数不变(r1 = 63 nm, r2 = 97 nm, d = 10 nm, h1 = 50 nm)改变导电结参数时散射系数的变化 (a) $ \theta $ = 450, h2 = 50 nm, O(x, y) = (100, 100), 改变结的宽度l从30到50 nm; (b) l = 40 nm, h2 = 50 nm, O(x, y) = (100, 100), 改变倾斜角度$ \theta $从250到450; (c) l = 40 nm, $ \theta $ = 450, h2 = 50 nm, 改变中心坐标O(x, y)从(70, 70)到(110, 110); (d) l = 40 nm, $ \theta $ = 450, O(x, y) = (100, 100), 改变结厚度h2从30到50 nm

    Figure 2.  When the parameters of the disc are unchanged (r1 = 63 nm, r2 = 97 nm, d = 10 nm, h1 = 50 nm) that the scattering spectrum depond on geometrical parameters: (a) Vary l with $ \theta $ = 450, h2 = 50 nm, O(x, y) = (100, 100); (b) vary $ \theta $ with l = 40 nm, h2 = 50 nm, O(x, y) = (100, 100); (c) vary O(x, y) with l = 40 nm, $ \theta $ = 450, h2 = 50 nm; (d) vary $ {h}_{2} $ with l = 40 nm, $ \theta $ = 450, O(x, y) = (100, 100).

    图 3  入射光不同偏振角度时的相同参数(l = 35 nm, h2 = 50 nm, O(x, y) = (100, 100), r1 = 63 nm, r2 = 97 nm, d = 10 nm)结构的散射系数, 偏振角度定义为入射光偏振方向与结构Y轴夹角

    Figure 3.  . Scattering spectra for various excitation polarizations with the same parameters (l = 35 nm, h2 = 50 nm, O(x, y) = (100, 100), r1 = 63 nm, r2 = 97 nm, d = 10 nm), and the polarization angle is defined as the angle between the polarization direction and the Y-axis.

    图 4  (a) 入射光偏振方向沿基底的Y轴方向时与入射光偏振方向与基底的Y轴的夹角为450时基底表面912 nm, 1064 nm, 1275 nm三个波长处与1064 nm时基底中心YZ横截面处的电场强度空间分布; (b) 当入射光偏振方向沿基底的Y轴方向夹角θ为0°, 15°, 30°, 45°时基底表面对应的增强GSECARS因子的对数空间分布图

    Figure 4.  (a)The spatial distributions of enhanced electric-filed amplitude (|E/E0|) in the top surface plane of the structure at three characteristic wavelengths for two polarizations; (b) the corresponding SECARS map for various polarizations. From the top to bottom, the polarization angle θ equals to 0°, 15°, 30°, 45°, respectively.

    Baidu
  • [1]

    Minck R W, Terhune R W, Rado W G 1963 Appl. Phys. Lett. 3 181

    [2]

    Begley R F, Harvey A B, Byer R L 1974 Appl. Phys. Lett. 25 387Google Scholar

    [3]

    Duncan M D, Reintjes J, Manuccia T J 1982 Opt. Lett. 7 350Google Scholar

    [4]

    Shi K, Li H, Xu Q, Psaltis D, Liu Z 2010 Phys. Rev. Lett. 104 093902Google Scholar

    [5]

    刘双龙, 刘伟, 陈丹妮, 屈军乐, 牛憨笨 2016 65 064204Google Scholar

    Liu S L, Liu W, Chen D N, Qu J L, Niu H B, 2016 Acta Phys. Sin. 65 064204Google Scholar

    [6]

    Steuwe C, Kaminski C F, Baumberg J J, Mahajan S 2011 Nano Lett. 11 5339Google Scholar

    [7]

    Krafft C, Dietzek B, Schmitt M, Popp J 2012 J Biomed. Opt. 17 040801Google Scholar

    [8]

    Koo T W, Chan S, Berlin A A 2005 Opt. Lett. 30 1024Google Scholar

    [9]

    Chew H, Wang D, Kerker M 1984 J. Opt. Soc. Am. B: Opt. Phys. 1 56Google Scholar

    [10]

    Addison C J, Konorov S O, Brolo A G, Blades M W, Turner R F B 2009 J. Phys.Chem. C 113 3586Google Scholar

    [11]

    Dmitri V V, Alexander M S, Xia H, Kai W, Pankaj K J, Elango M, Steven E W, George W, Alexei V S, Marlan O S 2012 Sci. Rep. 2 891Google Scholar

    [12]

    Shutov A D, Yi Z, Wang J, Sinyukov A M, He Z, Tang C, Chen J, Ocola E J, Laane J, Sokolov A V, Voronine D V, Scully M O 2018 ACS Photonics 5 4960Google Scholar

    [13]

    Prodan E, Nordlander P 2004 J. Chem. Phys. 120 5444Google Scholar

    [14]

    Halas N J, Lal S, Wei-Shun C, Link S, Nordlander P 2011 Chem. Rev. 111 3913Google Scholar

    [15]

    Fontana J, Charipar N, Flom S R, Naciri J, Piqué A, Ratna B R 2016 ACS Photonics 3 904Google Scholar

    [16]

    Fontana J, Ratna B R 2014 Appl. Phys. Lett. 105 011107Google Scholar

    [17]

    Huang Y, Ma L, Hou M, Xie Z, Zhang Z 2016 Phys. Chem. Chem. Phys. 18 2319Google Scholar

    [18]

    Liu L, Wang Y, Fang Z, Zhao K 2013 J. Chem. Phys. 139 064310Google Scholar

    [19]

    Pérez-González O, Zabala N, Borisov A G, Halas N J, Nordlander P, Aizpurua J 2010 Nano Lett. 10 3090Google Scholar

    [20]

    Zhang Y, Wen F, Zhen Y R, Nordlander P, Halas N J 2013 Proc. Natl. Acad. Sci. U. S. A. 110 9215Google Scholar

    [21]

    Zhang Y, Zhen Y R, Neumann O, Day J K, Nordlander P, Halas N J 2014 Nat. Commun. 5 4424Google Scholar

    [22]

    He J N, Fan C Z, Ding P, Zhu S M, Liang E J 2016 Sci. Rep. 6 20777Google Scholar

    [23]

    Kim K H, Rim W S 2019 Appl. Phys. A 125 1

    [24]

    Arpan D, Erik M V 2020 JEOS:RP 16 1Google Scholar

    [25]

    Tian M, Zhao Y, Wan M, Ji P, Li Y, Song Y, Yuan S, Zhou F, He J, Ding P 2018 Phys. Lett. A. 382 3187Google Scholar

    [26]

    Maiti N, Thomas S, Jacob J A, Chadha R, Mukherjee T, Kapoor S 2012 J. Colloid Interface Sci. 380 141Google Scholar

    [27]

    李亚琴, 简国树, 吴世法 2006 中国光学快报(英文版) 4 671

    li Y Q, Jian G S, Wu S F, 2006 Chin. Opt. Lett. 4 671

    [28]

    Hentschel M, Saliba M, Vogelgesang R, Giessen H, Alivisatos A P, Liu N 2010 Nano Lett. 10 2721Google Scholar

    [29]

    Hentschel M, Dregely D, Vogelgesang R, Giessen H, Liu N 2011 ACS Nano 5 2042Google Scholar

    [30]

    Encina E R, Coronado E A 2011 J. Phys. Chem. C 115 15908Google Scholar

    [31]

    Lovera A, Gallinet B, Nordlander P, Martin O J F 2013 ACS Nano 7 4527Google Scholar

  • [1] Ye Gao-Jie, Yin Cheng, Li Si-Yu, Yu Qiang, Wang Xian-Ping, Wu Jian. Surface lattice resonance effect of double-ring array of metallic nano-particles. Acta Physica Sinica, 2023, 72(10): 104201. doi: 10.7498/aps.72.20230199
    [2] Xu Si-Wei, Wang Xun-Si, Shen Xiang. Structure of GexGa8S92–x glasses studied by high-resolution X-ray photoelectron spectroscopy and Raman scattering. Acta Physica Sinica, 2023, 72(1): 017101. doi: 10.7498/aps.72.20221653
    [3] Jing Jian-Ying, Liu Kun, Wu Zhang-Yi, Liu Yue-Meng, Jiang Jun-Feng, Xu Tian-Hua, Yan Wei-Cheng, Xiong Yi-Yang, Zhan Xiao-Han, Xiao Lu, Liu Jin-Chang, Liu Tie-Gen. Violet phosphorus-enhanced plug-and-play double-lane fiber optic surface plasmon resonance refractometer. Acta Physica Sinica, 2023, 72(21): 214206. doi: 10.7498/aps.72.20231110
    [4] Liu Na, Wang Yi, Li Wen-Bo, Zhang Li-Yan, He Shi-Kun, Zhao Jian-Kun, Zhao Ji-Jun. Thermal stability study of Weyl semimetal WTe2/Ti heterostructures by Raman scattering. Acta Physica Sinica, 2022, 71(19): 197501. doi: 10.7498/aps.71.20220712
    [5] Bao Dong, Hua Deng-Xin, Qi Hao, Wang Jun. Method of remotely sensing seawater salinity fine detection based on Raman Brillouin scattering. Acta Physica Sinica, 2021, 70(22): 229201. doi: 10.7498/aps.70.20210201
    [6] Zhu Xu-Peng, Shi Hui-Min, Zhang Shi, Chen Zhi-Quan, Zheng Meng-Jie, Wang Ya-Si, Xue Shu-Wen, Zhang Jun, Duan Hui-Gao. Review on surface plasmonic coupling systems and their applications in spectra enhancement. Acta Physica Sinica, 2019, 68(14): 147304. doi: 10.7498/aps.68.20190782
    [7] Feng Shi-Liang, Wang Jing-Yu, Chen Shu, Meng Ling-Yan, Shen Shao-Xin, Yang Zhi-Lin. Surface plasmon resonance “hot spots” and near-field enhanced spectroscopy at interfaces. Acta Physica Sinica, 2019, 68(14): 147801. doi: 10.7498/aps.68.20190305
    [8] Jiang Hang, Zhou Yu-Rong, Liu Feng-Zhen, Zhou Yu-Qin. Effect of annealing treatment on characteristics of surface plasmon resonance for indium tin oxide. Acta Physica Sinica, 2018, 67(17): 177802. doi: 10.7498/aps.67.20180435
    [9] Li Bin, Luo Shi-Wen, Yu An-Lan, Xiong Dong-Sheng, Wang Xin-Bing, Zuo Du-Luo. Confocal-cavity-enhanced Raman scattering of ambient air. Acta Physica Sinica, 2017, 66(19): 190703. doi: 10.7498/aps.66.190703
    [10] Li Man, Dai Zhi-Gao, Ying Jian-Jian, Xiao Xiang-Heng, Yue Ya-Nan. Thermal characterization of carbon nanotube fibers based on steady-state electro-Raman-thermal technique. Acta Physica Sinica, 2015, 64(12): 126501. doi: 10.7498/aps.64.126501
    [11] Gan Yu-Lin, Wang Li, Su Xue-Qiong, Xu Si-Wei, Kong Le, Shen Xiang. Thermal conductivity measurement on GeSbSe glasses:Raman scattering spectra method. Acta Physica Sinica, 2014, 63(13): 136502. doi: 10.7498/aps.63.136502
    [12] Ren Xiu-Yun, Tian Zhao-Shuo, Sun Lan-Jun, Fu Shi-You. Effects of laser wavelength on both water temperature measurement precision and detection depth of Raman scattering lidar system. Acta Physica Sinica, 2014, 63(16): 164209. doi: 10.7498/aps.63.164209
    [13] Wang Yue, Liu Li-Wei, Hu Si-Yi, Li Qi-Yang, Sun Zhen-Hao, Miao Xin-Hui, Yang Xiao-Chuan, Zhang Xi-He. Simulation study based on the COMSOL Mutiphysics to the surface plasmon resonance of Cu2S quantum dots. Acta Physica Sinica, 2013, 62(19): 197803. doi: 10.7498/aps.62.197803
    [14] Zhang Hong-Yu, Zhang Shao-Hua, Liang He, Liu Yu-Hong, Luo Jian-Bin. Molecular alignment of nano-thin film using Raman spectroscopy. Acta Physica Sinica, 2011, 60(9): 098109. doi: 10.7498/aps.60.098109
    [15] Wang Wei-Ning. Terahertz and Raman spectra of L-threonine. Acta Physica Sinica, 2009, 58(11): 7640-7645. doi: 10.7498/aps.58.7640
    [16] Hu Ni, Xiong Rui, Wei Wei, Wang Zi-Yu, Wang Li-Li, Yu Zu-Xing, Tang Wu-Feng, Shi Jing. Raman scattering study of the spin ladder compound Sr14(Cu1-yFey)24O41. Acta Physica Sinica, 2008, 57(8): 5267-5271. doi: 10.7498/aps.57.5267
    [17] Cao Chun-Fang, Wu Hui-Zhen, Si Jian-Xiao, Xu Tian-Ning, Chen Jing, Shen Wen-Zhong. Abnormal Raman spectra of PbTe crystalline thin films grown by molecular beam epitaxy. Acta Physica Sinica, 2006, 55(4): 2021-2026. doi: 10.7498/aps.55.2021
    [18] Cheng Ze. Unified quantum field theory of Raman scattering of light in piezoelectric crystals. Acta Physica Sinica, 2005, 54(11): 5435-5444. doi: 10.7498/aps.54.5435
    [19] Wu Yan-Zhao, Yu Ping, Wang Yu-Fang, Jin Qing-Hua, Ding Da-Tong, Lan Guo-Xiang. Baman scattering intensity of single-wall carbon nanotubes. Acta Physica Sinica, 2005, 54(11): 5262-5268. doi: 10.7498/aps.54.5262
    [20] Zhang Ji-Cai, Dai Lun, Qin Guo-Gang, Ying Li-Zhen, Zhao Xin-Sheng. . Acta Physica Sinica, 2002, 51(3): 629-634. doi: 10.7498/aps.51.629
Metrics
  • Abstract views:  4732
  • PDF Downloads:  64
  • Cited By: 0
Publishing process
  • Received Date:  24 October 2020
  • Accepted Date:  20 November 2020
  • Available Online:  25 May 2021
  • Published Online:  20 May 2021

/

返回文章
返回
Baidu
map