Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A generalized simplified modeling method for electromagnetic coupling effects of uncertainty strapping cable harness

Xiao Pei Li Jia-Wei He Jia-Gang Li Jin-Xin Liu Zhu Li Gao-Sheng

Citation:

A generalized simplified modeling method for electromagnetic coupling effects of uncertainty strapping cable harness

Xiao Pei, Li Jia-Wei, He Jia-Gang, Li Jin-Xin, Liu Zhu, Li Gao-Sheng
cstr: 32037.14.aps.70.20201723
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The cable harness provides a main gateway for electromagnetic interference(EMI) in electromechanical system. The unreasonable electromagnetic compatibility (EMC) design of cable harness will produce EMI to other on-board electronic equipment, bringing great safety risks to the system. Theoretical research and engineering practice indicate that most of the electromechanical systems cannot satisfy EMC standards, which can be attributed to the EMI generated by cables. As for the eletromagnetic(EM) illumination analysis, reliably and efficiently generating a full numerical model of cable harness is becoming more prominent for the EMC designers. Therefore, it is necessary to develop a more effective method to solve the modeling problem of cable harness. In the practical application, the cable harness has the characteristics of spatial layout, and its characteristics such as “large number of core wires”, “arbitrary curvature of space” and “randomness of wiring” bring challenges to the modeling of EM coupling to cable harness. The numerical simulation of the whole cable harness model requires severe conditions for computational resource and even makes the EM coupling analysis impossible. Thus, considering the uncertainty of wire position, this paper proposes a generalized simplified modeling method for the EM coupling effect of uncertainty strapping cable harness. Firstly, the Gaussian distribution and spline interpolation are used to determine the location of the core conductors in the random bundling. Then, the distribution parameters of the cable harness at different positions are established by using the transposition relationship between the subsegments of the wires. Finally, the effectiveness of the proposed method is verified by numerical examples of the arc-shaped and sine-shaped harness. In conclusion, this paper proposes a generalized simplification technique to model the EM illumination on cable harness with uncertainty wiring factors. By grouping the conductors together, the required computation time is markedly reduced and the complexity of modeling the completely cable harness is significantly simplified within a good accuracy. The proposed method provides a way of solving the modeling problem caused by “uncertainty strapping” of the complex wiring harnesses in electromechanical systems.
      Corresponding author: Li Gao-Sheng, gaosheng7070@vip.163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51675086) and the China Postdoctoral Science Foundation (Grant No. 2020M672482)
    [1]

    任丹, 杜平安, 聂宝林, 曹钟, 刘文奎 2014 63 120701Google Scholar

    Ren D, Du P A, Nie B L, Cao Z, Liu W Q 2014 Acta Phys. Sin. 63 120701Google Scholar

    [2]

    曹钟, 杜平安, 聂宝林, 任丹, 张其道 2014 63 124102Google Scholar

    Cao Z, Du P A, Nie B L, Ren D, Zhang Q D 2014 Acta Phys. Sin. 63 124102Google Scholar

    [3]

    叶志红, 张杰, 周健健, 苟丹 2020 69 060701Google Scholar

    Ye Z H, Zhang J, Zhou J J, Gou D 2020 Acta Phys. Sin. 69 060701Google Scholar

    [4]

    吴振军, 王丽芳, 廖承林 2009 59 6146Google Scholar

    Wu Z J, Wang L F, Liao C L 2009 Acta Phys. Sin. 59 6146Google Scholar

    [5]

    孙亚秀, 卓庆坤, 姜庆辉, 李千 2015 64 044102Google Scholar

    Sun Y X, Zhuo Q K, Jiang Q H, Li Q 2015 Acta Phys. Sin. 64 044102Google Scholar

    [6]

    王海龙, 吴群, 孟繁义, 李乐伟 2007 56 2608Google Scholar

    Wang H L, Wu Q, Meng F Y, Li Y W 2007 Acta Phys. Sin. 56 2608Google Scholar

    [7]

    Andrieu G, Kone L, Bocquet F 2008 IEEE Trans. Electromagn. Compat. 50 175Google Scholar

    [8]

    Andrieu G, Reineix A, Bunlon M 2009 IEEE Trans. Electromagn. Compat. 51 108Google Scholar

    [9]

    Andrieu G, Reineix A 2013 IEEE Trans. Electromagn. Compat. 55 798Google Scholar

    [10]

    Schetelig B, Keghie J, Kanyou R 2010 Adv. Radio Sci. 8 211Google Scholar

    [11]

    Li Z, Shao Z J, Ding J 2011 IEEE Trans. Electromagn. Compat. 53 1040Google Scholar

    [12]

    Li Z, Liu L L, Ding J 2012 IEEE Trans. Electromagn. Compat. 54 940Google Scholar

    [13]

    Li Z, Liu L L, Yan J 2013 IEEE Trans. Electromagn. Compat. 55 975Google Scholar

    [14]

    汪泉弟, 郑亚利, 刘青松, 曾铉, 俞集辉 2012 电工技术学报 7 160

    Wang Q D, Zheng Y L, Liu Q S, Zeng X, Yu J H 2012 Transactions of China Electrotechnical Society 7 160

    [15]

    高印寒, 安占扬, 王举贤 2015 吉林大学学报 45 946

    Gao Y H, An Z Y, Wang J X 2015 J. Jilin Univ. 45 946

    [16]

    王天皓, 高印寒, 高乐 2017 吉林大学学报 47 392

    Wang T H, Gao Y H, Gao L 2017 J. Jilin Univ. 47 392

    [17]

    Paul C R 2008 Analysis of Multiconductor Transmission Lines (New Jersey: John Wiley & Sons)

    [18]

    高印寒, 王瑞宝, 马玉刚, 王莹莹, 杨开宇 2011 吉林大学学报 19 1088

    Gao Y H, Wang R Z, Ma Y G, Wang Y Y, Yang K Y 2011 J. Jilin Univ. 19 1088

    [19]

    Sun S, Liu G, Drewniak J L 2007 IEEE Trans. Electromagn. Compat. 49 708Google Scholar

    [20]

    Duffy A P, Martin A J M, Orlandi A, Antonini G 2006 IEEE Trans. Electromagn. Compat. 48 449Google Scholar

    [21]

    Orlandi A, Duffy A P, Archambeault B, Antonini G 2006 IEEE Trans. Electromagn. Compat. 48 460Google Scholar

  • 图 1  控制器信号线缆束

    Figure 1.  Controller signal cable bundle..

    图 2  设备互连线束示意图 (a)弧形捆扎线束; (b)线束电路连接示意图

    Figure 2.  Schematic diagram of equipment interconnection wiring cable harness: (a) Arc-shaped binding cable harness; (b) circuit connection diagram.

    图 3  不确定性捆扎线束简化建模

    Figure 3.  Simplification modeling of uncertainty binding cable harness.

    图 4  双导体传输线几何截面结构

    Figure 4.  Cross-sectional geometry of double conductors.

    图 5  不确定性线束建模步骤 (a)线束始端的确立; (b)基于样条插值法的线束位置; (c)分段级联

    Figure 5.  Modeling steps for uncertainty cable harness: (a) Determination of the beginning end; (b) location of the cable harness based on spline interpolation; (c) sectional cascade.

    图 6  线束内导线之间的换位示意图

    Figure 6.  A schematic diagram of transposition between conductors in the cable harness.

    图 7  共模负载的确立

    Figure 7.  Determination of the common mode load impedance.

    图 8  平面波照射下21根圆弧捆扎线束模型示意图

    Figure 8.  Schematic diagram of a 21-conductor circular arc-shaped binding cable harness model illuminated by the plane wave.

    图 9  圆弧不确定性捆扎线束简化前后负载耦合电流对比 (a)近端; (b)远端

    Figure 9.  Comparison of the load coupling current on the circular arc-shaped binding cable harness: (a) Near end; (b) far end.

    图 10  平面波照射下21根正弦弧形不确定性捆扎线束模型

    Figure 10.  Schematic diagram of a 21-conductor sine arc-shaped binding cable harness model illuminated by the plane wave.

    图 11  正弦不确定性捆扎线束简化前后负载耦合电流对比 (a)近端; (b)远端

    Figure 11.  Comparison of the load coupling current on the sine arc-shaped binding cable harness: (a) Near end; (b) far end.

    表 1  直角坐标系中21-线束模型近端位置(单位: mm)

    Table 1.  Coordinates of each conductor near end of the 21-conductor cable harness (unit: mm).

    导线编号1234567
    坐标x, y–8, 4–8, 0–8, –4–4, 8–4, 4–4, 0–4, 4
    导线编号891011121314
    坐标x, y–4, –80, 40, 40, 00, –40, –84, 8
    导线编号15161718192021
    坐标x, y4, 44, 04, –44, –88, 48, 08, –4
    DownLoad: CSV

    表 2  本文方法的FSV评价结果

    Table 2.  The FSV evaluation results of the proposed method.

    线束终端FSV
    ADMtotFDMtotGDMtot
    圆弧线束近端0.265/good0.181/very good0.317/good
    远端0.289/good0.200/very good0.345/good
    正弦线束近端0.313/good0.172/very good0.376/good
    远端0.290/good0.157/very good0.350/good
    DownLoad: CSV

    表 3  全模型和简化模型仿真时间分析

    Table 3.  Analysis time of the simplified and complete model.

    模型圆弧全
    模型
    圆弧简化
    模型
    正弦全
    模型
    正弦简化
    模型
    计算时间/s32224202919336
    DownLoad: CSV
    Baidu
  • [1]

    任丹, 杜平安, 聂宝林, 曹钟, 刘文奎 2014 63 120701Google Scholar

    Ren D, Du P A, Nie B L, Cao Z, Liu W Q 2014 Acta Phys. Sin. 63 120701Google Scholar

    [2]

    曹钟, 杜平安, 聂宝林, 任丹, 张其道 2014 63 124102Google Scholar

    Cao Z, Du P A, Nie B L, Ren D, Zhang Q D 2014 Acta Phys. Sin. 63 124102Google Scholar

    [3]

    叶志红, 张杰, 周健健, 苟丹 2020 69 060701Google Scholar

    Ye Z H, Zhang J, Zhou J J, Gou D 2020 Acta Phys. Sin. 69 060701Google Scholar

    [4]

    吴振军, 王丽芳, 廖承林 2009 59 6146Google Scholar

    Wu Z J, Wang L F, Liao C L 2009 Acta Phys. Sin. 59 6146Google Scholar

    [5]

    孙亚秀, 卓庆坤, 姜庆辉, 李千 2015 64 044102Google Scholar

    Sun Y X, Zhuo Q K, Jiang Q H, Li Q 2015 Acta Phys. Sin. 64 044102Google Scholar

    [6]

    王海龙, 吴群, 孟繁义, 李乐伟 2007 56 2608Google Scholar

    Wang H L, Wu Q, Meng F Y, Li Y W 2007 Acta Phys. Sin. 56 2608Google Scholar

    [7]

    Andrieu G, Kone L, Bocquet F 2008 IEEE Trans. Electromagn. Compat. 50 175Google Scholar

    [8]

    Andrieu G, Reineix A, Bunlon M 2009 IEEE Trans. Electromagn. Compat. 51 108Google Scholar

    [9]

    Andrieu G, Reineix A 2013 IEEE Trans. Electromagn. Compat. 55 798Google Scholar

    [10]

    Schetelig B, Keghie J, Kanyou R 2010 Adv. Radio Sci. 8 211Google Scholar

    [11]

    Li Z, Shao Z J, Ding J 2011 IEEE Trans. Electromagn. Compat. 53 1040Google Scholar

    [12]

    Li Z, Liu L L, Ding J 2012 IEEE Trans. Electromagn. Compat. 54 940Google Scholar

    [13]

    Li Z, Liu L L, Yan J 2013 IEEE Trans. Electromagn. Compat. 55 975Google Scholar

    [14]

    汪泉弟, 郑亚利, 刘青松, 曾铉, 俞集辉 2012 电工技术学报 7 160

    Wang Q D, Zheng Y L, Liu Q S, Zeng X, Yu J H 2012 Transactions of China Electrotechnical Society 7 160

    [15]

    高印寒, 安占扬, 王举贤 2015 吉林大学学报 45 946

    Gao Y H, An Z Y, Wang J X 2015 J. Jilin Univ. 45 946

    [16]

    王天皓, 高印寒, 高乐 2017 吉林大学学报 47 392

    Wang T H, Gao Y H, Gao L 2017 J. Jilin Univ. 47 392

    [17]

    Paul C R 2008 Analysis of Multiconductor Transmission Lines (New Jersey: John Wiley & Sons)

    [18]

    高印寒, 王瑞宝, 马玉刚, 王莹莹, 杨开宇 2011 吉林大学学报 19 1088

    Gao Y H, Wang R Z, Ma Y G, Wang Y Y, Yang K Y 2011 J. Jilin Univ. 19 1088

    [19]

    Sun S, Liu G, Drewniak J L 2007 IEEE Trans. Electromagn. Compat. 49 708Google Scholar

    [20]

    Duffy A P, Martin A J M, Orlandi A, Antonini G 2006 IEEE Trans. Electromagn. Compat. 48 449Google Scholar

    [21]

    Orlandi A, Duffy A P, Archambeault B, Antonini G 2006 IEEE Trans. Electromagn. Compat. 48 460Google Scholar

Metrics
  • Abstract views:  6182
  • PDF Downloads:  69
  • Cited By: 0
Publishing process
  • Received Date:  16 October 2020
  • Accepted Date:  18 December 2020
  • Available Online:  06 May 2021
  • Published Online:  20 May 2021
  • /

    返回文章
    返回
    Baidu
    map