Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A Ge-based Schottky diode for 2.45 G weak energy microwave wireless energy transmission based on crystal orientation optimization and Sn alloying technology

Song Jian-Jun Zhang Long-Qiang Chen Lei Zhou Liang Sun Lei Lan Jun-Feng Xi Chu-Hao Li Jia-Hao

Citation:

A Ge-based Schottky diode for 2.45 G weak energy microwave wireless energy transmission based on crystal orientation optimization and Sn alloying technology

Song Jian-Jun, Zhang Long-Qiang, Chen Lei, Zhou Liang, Sun Lei, Lan Jun-Feng, Xi Chu-Hao, Li Jia-Hao
科大讯飞翻译 (iFLYTEK Translation)
PDF
HTML
Get Citation
  • With the development of modern communication technology, unlimited energy harvesting technology has become more and more popular. Among them, the weak energy density wireless energy harvesting technology has broken through the limitations in traditional transmission lines and can use the “waste” energy in the environment, which has become very popular. The Schottky diode is the core device of the 2.45 G weak energy density wireless energy harvesting system, and its performance determines the upper limit of the system's rectification efficiency. From the material design point of view, using crystal orientation optimization technology and Sn alloying technology, we propose and design a Ge-based compound semiconductor with large effective mass, large affinity, and high electron mobility. On this basis, the device simulation tool is further used to set reasonable device material physical parameters and geometric structure parameters, and a Ge-based Schottky diode for 2.45 G weak energy microwave wireless energy transmission is realized. The simulation of the ADS rectifier circuit based on the SPICE model of the device shows that comparing with the conventional Schottky diode, the turn-on voltage of the device is reduced by about 0.1 V, the zero-bias capacitance is reduced by 6 fF, and the reverse saturation current is also significantly increased. At the same time, the designed new Ge-based Schottky diode is used as the core rectifier device to simulate the rectifier circuit. The results show that the new-style Ge-based Schottky diode is in the weak energy working area with input energy in a range of –10 — –20 dBm. The energy conversion efficiency is increased by about 10%. The technical solutions and relevant conclusions of this article can provide a useful reference for solving the problem of low rectification efficiency of the 2.45 G weak energy density wireless energy harvesting system.
      Corresponding author: Song Jian-Jun, jianjun_79_81@xidian.edu.cn
    • Funds: Project supported by the National 111 Center (Grant No. B12026)
    [1]

    李妤晨, 陈航宇, 宋建军 2020 69 108401Google Scholar

    Li Y C, Chen H Y, Song J J 2020 Acta Phys. Sin. 69 108401Google Scholar

    [2]

    De S C, Meneghini M, Caria A, Dogmus E, Zegaoui M, Medjdoub F, Kalinic B, Cesca T, Meneghesso G, Zanoni E 2018 Mater. Today 11 153

    [3]

    Wan S P, Huang K 2018 IEEE Antennas Wirel. Propag. Lett. 17 538

    [4]

    Chen Y S, Chiu C W 2018 Int. J. RF Microwave Comput. Aided Eng. 28 1

    [5]

    Erkmen F, Almoneef T S, Ramahi O M 2018 IEEE Trans. Microwave Theory Tech. 66 2433Google Scholar

    [6]

    Wonwoo L, Yonghee J 2018 Micromachines. 10 12Google Scholar

    [7]

    Song C Y, Huang Y, Zhou J F, Zhang J W, Yuan S, Carter P 2015 IEEE Trans. Antennas Propag. 63 3486Google Scholar

    [8]

    Hemour S, Zhao Y P, Lorenz C H P, Houssameddine D, Gui Y S, Hu C M, Wu K 2014 IEEE Trans. Microwave Theory Tech. 62 965Google Scholar

    [9]

    Abdelmalek B, Fedoua D, Ilyas B 2019 Wirel. Netw. 25 3029Google Scholar

    [10]

    Zheng S Y, Liu W J, Pan Y M 2019 IEEE Trans. Ind. Inf. 15 3334Google Scholar

    [11]

    Cansiz M, Altinel D, Kurt G K 2019 Energy Technol. 174 292

    [12]

    Liu W F, Wang Y Y, Song J J 2020 Superlattices Microstruct. 28 106639

    [13]

    施敏, 伍国珏 著 (耿莉, 张瑞智 译) 2007 半导体器件物理 (北京: 西安交通大学出版社) 第 110−113页

    Sze S M, Kwok K N (translated by Geng L, Zhang R Z) 2007 Physics of Semiconductor Devices (Xi’an: Xi’an jiaotong University Press) pp130−142 (in Chinese)

    [14]

    Yang W, Song J J, Hu H Y, Zhang H M 2018 J. Nanoelectron. Optoelectron. 13 986Google Scholar

    [15]

    杨雯, 宋建军, 任远, 张鹤鸣 2018 67 198502Google Scholar

    Yang W, Song J J, Ren Y, Zhang H M 2018 Acta Phys. Sin. 67 198502Google Scholar

    [16]

    Yang W, Song J J, Miao Y H, Zhang J, Dai X Y 2019 Sci. Technol. Adv. Mater. 11 1315

    [17]

    Zhai X, Song J J, Dai X Y 2019 IEEE Access 7 127438Google Scholar

    [18]

    Wirths S, Geiger R, Driesch V D N, Mussler G, Stoica T, Mantl S, Ikonic Z, Luysberg M, Chiussi S, Hartmann J M, Sigg H, Faist J, Buca D, Grützmacher D 2015 Nat. Photonics 9 88Google Scholar

    [19]

    Zhai X, Song J J, Dai X Y, Zhao T L 2020 Semicond. Sci. Technol. 35 085026Google Scholar

    [20]

    Amato M, Bertocchi M, Ossicini S 2016 J. Phys. D: Appl. Phys. 119 085705Google Scholar

    [21]

    Minnie M, Rajeev K S, Charita M 2020 Mater. Today 28 1445

    [22]

    Huang W Q, Cheng B W, Xue C L, Li C B 2014 Physica B 443 43Google Scholar

  • 图 1  (a) 微波无线能量传输系统; (b) 典型肖特基二极管示意图

    Figure 1.  (a) Microwave wireless energy transmission system; (b) schematic diagram of a typical Schottky diode.

    图 2  (001), (101), (111)剖面任意晶向电子电导率有效质量(极坐标系下)[14]

    Figure 2.  (001), (101), (111) cross-section arbitrary crystal orientation electron conductivity effective mass (in polar coordinate system)[14].

    图 3  Sn合金化致Ge带隙类型转变示意图[19]

    Figure 3.  Schematic diagram of Ge band gap type transition caused by Sn alloying[19].

    图 4  (100), (110), (111)晶面Ge半导体功函数[18,19]

    Figure 4.  (100), (110), (111) crystal plane Ge semiconductor work function[18,19].

    图 5  (a) 新型SBD器件剖面示意图含层结构材料物理参数和几何结构参数; (b)传统SBD

    Figure 5.  (a) The cross-sectional schematic diagram of the new SBD device contains the physical parameters and geometric structure parameters of the layered structure material; (b) the traditional SBD.

    图 6  新型SBD器件Silvaco仿真结构和网格设置截图

    Figure 6.  A screenshot of the Silvaco simulation structure and grid settings of the new SBD device.

    图 7  不同厚度$\left\langle {100} \right\rangle $晶向Ge帽层新型SBD器件正向伏安特性曲线

    Figure 7.  Forward V-J characteristic curve of new SBD device with different thickness $\left\langle {100} \right\rangle $ crystal orientation Ge cap layer.

    图 8  三种Ge基SBD器件伏安特性、电容特性仿真结果

    Figure 8.  volt-ampere characteristic Capacitance-voltage characteristic simulation results of three Ge-based SBD devices.

    图 9  新型Ge基SBD器件击穿特性仿真结果

    Figure 9.  Simulation results of the breakdown characteristics of the new Ge-based SBD device.

    图 10  新型Ge基SBD器件整流测试电路

    Figure 10.  New Ge-based SBD device rectification test circuit.

    图 11  整流电路的仿真结果, 输入能量与 (a)阻抗实部、(b)阻抗虚部、(c)整流效率以及(d)弱能量区域整流效率的关系

    Figure 11.  Simulation results of the rectifier circuit, the relationship between the input energy and (a) the real part of the impedance (b) the imaginary part of the impedance (c) the rectification efficiency (d) the rectification efficiency in the weak energy region.

    表 1  三种Ge基SBD器件SPICE参数表

    Table 1.  SPICE parameter table of three Ge-based SBD devices.

    参数$ {B}_{v}/ $V$ {C}_{j0} $/fF$ {E}_{\rm{G}} $/eV$ {I}_{\rm{S}} $/AN$ {R}_{\rm{S}} $/${\Omega }$M
    Ge18.9360.699.6235 × 10–110.9992.90.5072
    GeSn1936.20.699.628 × 10–110.9992.80.5073
    Ge_on_GeSn11.4300.691.0437 × 10–81.10611.60.4037
    DownLoad: CSV
    Baidu
  • [1]

    李妤晨, 陈航宇, 宋建军 2020 69 108401Google Scholar

    Li Y C, Chen H Y, Song J J 2020 Acta Phys. Sin. 69 108401Google Scholar

    [2]

    De S C, Meneghini M, Caria A, Dogmus E, Zegaoui M, Medjdoub F, Kalinic B, Cesca T, Meneghesso G, Zanoni E 2018 Mater. Today 11 153

    [3]

    Wan S P, Huang K 2018 IEEE Antennas Wirel. Propag. Lett. 17 538

    [4]

    Chen Y S, Chiu C W 2018 Int. J. RF Microwave Comput. Aided Eng. 28 1

    [5]

    Erkmen F, Almoneef T S, Ramahi O M 2018 IEEE Trans. Microwave Theory Tech. 66 2433Google Scholar

    [6]

    Wonwoo L, Yonghee J 2018 Micromachines. 10 12Google Scholar

    [7]

    Song C Y, Huang Y, Zhou J F, Zhang J W, Yuan S, Carter P 2015 IEEE Trans. Antennas Propag. 63 3486Google Scholar

    [8]

    Hemour S, Zhao Y P, Lorenz C H P, Houssameddine D, Gui Y S, Hu C M, Wu K 2014 IEEE Trans. Microwave Theory Tech. 62 965Google Scholar

    [9]

    Abdelmalek B, Fedoua D, Ilyas B 2019 Wirel. Netw. 25 3029Google Scholar

    [10]

    Zheng S Y, Liu W J, Pan Y M 2019 IEEE Trans. Ind. Inf. 15 3334Google Scholar

    [11]

    Cansiz M, Altinel D, Kurt G K 2019 Energy Technol. 174 292

    [12]

    Liu W F, Wang Y Y, Song J J 2020 Superlattices Microstruct. 28 106639

    [13]

    施敏, 伍国珏 著 (耿莉, 张瑞智 译) 2007 半导体器件物理 (北京: 西安交通大学出版社) 第 110−113页

    Sze S M, Kwok K N (translated by Geng L, Zhang R Z) 2007 Physics of Semiconductor Devices (Xi’an: Xi’an jiaotong University Press) pp130−142 (in Chinese)

    [14]

    Yang W, Song J J, Hu H Y, Zhang H M 2018 J. Nanoelectron. Optoelectron. 13 986Google Scholar

    [15]

    杨雯, 宋建军, 任远, 张鹤鸣 2018 67 198502Google Scholar

    Yang W, Song J J, Ren Y, Zhang H M 2018 Acta Phys. Sin. 67 198502Google Scholar

    [16]

    Yang W, Song J J, Miao Y H, Zhang J, Dai X Y 2019 Sci. Technol. Adv. Mater. 11 1315

    [17]

    Zhai X, Song J J, Dai X Y 2019 IEEE Access 7 127438Google Scholar

    [18]

    Wirths S, Geiger R, Driesch V D N, Mussler G, Stoica T, Mantl S, Ikonic Z, Luysberg M, Chiussi S, Hartmann J M, Sigg H, Faist J, Buca D, Grützmacher D 2015 Nat. Photonics 9 88Google Scholar

    [19]

    Zhai X, Song J J, Dai X Y, Zhao T L 2020 Semicond. Sci. Technol. 35 085026Google Scholar

    [20]

    Amato M, Bertocchi M, Ossicini S 2016 J. Phys. D: Appl. Phys. 119 085705Google Scholar

    [21]

    Minnie M, Rajeev K S, Charita M 2020 Mater. Today 28 1445

    [22]

    Huang W Q, Cheng B W, Xue C L, Li C B 2014 Physica B 443 43Google Scholar

Metrics
  • Abstract views:  5439
  • PDF Downloads:  61
  • Cited By: 0
Publishing process
  • Received Date:  10 October 2020
  • Accepted Date:  03 February 2021
  • Available Online:  06 May 2021
  • Published Online:  20 May 2021

/

返回文章
返回
Baidu
map