Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principles prediction of carbon monoxide nanotube bundles in low pressure phase

Zhou Hong-Cai Huang Shu-Lai Li Gui-Xia Yu Gui-Feng Wang Juan Bu Hong-Xia

Citation:

First-principles prediction of carbon monoxide nanotube bundles in low pressure phase

Zhou Hong-Cai, Huang Shu-Lai, Li Gui-Xia, Yu Gui-Feng, Wang Juan, Bu Hong-Xia
cstr: 32037.14.aps.68.20190539
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The crystal structure of carbon monoxide has been studied for more than half a century. The internal structures of low-pressure carbon monoxide crystals have been investigated by means of infrared analysis and Raman analysis, and the internal structure of carbon monoxide has also been studied through computational analysis. Previous studies showed that carbon monoxide can produce different phase transitions at different pressures, and thus forming new polymers with new physical properties such as electrical, optical and mechanical properties. In this paper, from first-principles calculations, we propose six nanotube structures made of carbon monoxide, named Tube-3–Tube-8. The nanotubes are packed into the nanotube bundles, and carbon monoxide nanotube bundle structures that are similar to carbon nanotube bundles are constructed by first-principles calculation. We study the structural, energy and electronic properties of the nanotubes and nanotube bundles. In order to evaluate the relative stability of the predicted nanotubes, we calculate the cohesive energy and phonon spectrum, and we also carry out the molecular dynamics analysis. The results show that there are three nanotubes (Tube-4–Tube-6) that are relatively stable, of which Tube-5 nanotube is the most stable phase. We attribute the stability of Tube-5 to sp3-hybridized C atoms being nearest to the hybridized atoms of diamond. Then we investigate nanotube bundles from the three stable nanotubes, and accordingly name them Bundles-4–Bundles-6. We calculate the enthalpy function under pressure and compare it with the enthalpy function of several known carbon monoxide molecular crystal and chain crystal, which are the most stable structures according to the current studies. More pleasingly, we find that these nanotube bundles are more stable than these carbon monoxide molecular crystal and chain crystal at low pressure. In addition, by calculating the energy bands of Tube-4–Tube-6, we can deduce that these nanotube bundles (Bundles-4– Bundles-6) are all wide band gap semiconductors, which are entirely different from molecular and chain crystals that are metals. We expect that the discovery of nanotube bundle structures will increase the diversity of carbon monoxide crystal under low pressure, and provide a new understanding of exploring the internal structure of carbon monoxide crystal.
      Corresponding author: Bu Hong-Xia, buhx666@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11604170), the Scientific Research in Universities of Shandong Province, China (Grant No. J16LJ06), and the Natural Science Foundation of Shandong Province, China (Grant No. ZR2014AQ018)
    [1]

    Ashcroft N W 2004 Phys. Rev. Lett. 92 187002Google Scholar

    [2]

    Yoo C S, Cynn H, Gygi F, Galli G 1999 Phys. Rev. Lett. 83 5527Google Scholar

    [3]

    Eremets M I, Gavriliu K A G, Trojan I A, Dziven Ko D A, Boehler R 2004 Nat. Mater. 3 558Google Scholar

    [4]

    Yoo C S 2013 Phys. Chem. Chem. Phys. 15 7949Google Scholar

    [5]

    Santoro M, Gorelli F A, Bini R, Salamat A, Garbarino G, Levelut C, Cambon O, Haines J 2014 Nat. Commun. 5 3761Google Scholar

    [6]

    Zhou R L, Qu B Y, Dai J, Cheng Z 2014 Phys. Rev. X 4 011030Google Scholar

    [7]

    Evans W J, Lipp M J, Yoo C S, Cynn H 2006 Chem. Mater. 18 10

    [8]

    Schettino V, Roberto B 2003 Phys. Chem. Chem. Phys. 5 1951Google Scholar

    [9]

    Raza Z, Pickard C J, Pinilla C, Saitta A M 2013 Phys. Rev. Lett. 111 235501Google Scholar

    [10]

    Naghavi S S, Crespo Y, Martoná K R, Tosatti1 E 2015 Phys. Rev. B 91 224108Google Scholar

    [11]

    Pic Kard C J, Needs R J 2009 Phys. Rev. Lett. 102 125702Google Scholar

    [12]

    Sun J, Klug D D, Martoná K R, Montoya J A, Lee M S, Scandolo S, Tosatti E 2009 Proc. Natl. Acad. Sci. U.S.A. 106 6077Google Scholar

    [13]

    Boulard E, Pan D, Galli G, Liu Z, Mao W L 2015 Nat. Commun. 6 6311Google Scholar

    [14]

    Lipp M, Evans W J, Garcia-Baonza V, Lorenzana H E 1998 Low Temp. Phys. 111 247Google Scholar

    [15]

    Bernard S, Chiarott G L, Scandolo S, Tosatti E 1998 Phys. Rev. Lett. 81 2092Google Scholar

    [16]

    Sun J, Klug D D, Pic Kard C J, Needs R J 2011 Phys. Rev. Lett. 106 145502Google Scholar

    [17]

    Lipp M J, Evans W J, Baer B J, Yoo C S 2005 Nat. Mater. 4 211Google Scholar

    [18]

    Cromer D T, Schiferl D, Lesar R, Mills R T 1983 Acta Crystallogr C 39 1146Google Scholar

    [19]

    Ma, Y M, Oganov A R, Li Z W, Xie Y, Kota Kos Ki J 2009 Phys. Rev. Lett. 102 065501Google Scholar

    [20]

    Santoro M, Gorelli F A 2006 Chem. Soc. Rev. 35 918Google Scholar

    [21]

    Plašienka D, Martoňák R 2014 Phys. Rev. B 89 134105Google Scholar

    [22]

    Lu C, Miao M, Ma Y 2013 Am. Chem. Soc. 135 14167Google Scholar

    [23]

    Datchi F Mallic K B, Salamat A, Rousse G, Ninet S, Garbarino G, Bouvier P, Mezouar M 2014 Phys. Rev. B 89 144101Google Scholar

    [24]

    Datchi F, Mallic K B, Salamat A, Ninet S 2012 Phys. Rev. Lett. 108 125701Google Scholar

    [25]

    Polian A, Loubeyre P, Boccara N 1989 Simple Molecular System at Very High Density (New York: Plenum Publishing Corporation) pp221−236

    [26]

    Mills R L, Schiferl D, Katz A L, Olinger B W 1984 J. Phys. Colloq. 45 186Google Scholar

    [27]

    Yang N L, Snow A, Haubenstoc K H, Bramwell F B 1978 J. Polymer. Sci. Polymer. Chem. Ed. 16 1909Google Scholar

    [28]

    Ordejón P, Artacho E, Soler J M 1996 Phys. Rev. B 53 10441Google Scholar

    [29]

    Hohenberg P, Kohn W 1964 Phys. Rev. B 136 864Google Scholar

    [30]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [31]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar

    [32]

    Perdew J P, Bur Ke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [33]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [34]

    Heyd J, Scuseria G E, Ernzerhof M J 2006 Chem. Phys. 124 219906

    [35]

    Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207Google Scholar

  • 图 1  (a)每种CO纳米管的相对能量; (b)每种CO纳米管键角相对于直径的函数图像

    Figure 1.  (a) Relative energy of each CO nanotube; (b) the bond angle as a function of the diameter of each CO nanotube

    图 2  各纳米管z方向晶格扫描能量图(a)和横截面图(b)

    Figure 2.  Lattice scanning energy diagrams (a) and cross sections (b) of various nanotubes according z direction

    图 3  (a) Tube-4—Tube-6的声子谱; (b)分子动力学模拟图像

    Figure 3.  (a) Phonon spectra and (b) evolution of energy as a function of time during the molecular dynamics simulations at 300 K of Tube-4− Tube-6

    图 4  Tube-4—Tube-6纳米管堆垛而成的纳米管束结构

    Figure 4.  Structure diagram of nanotube bundle

    图 5  (a)五种不同一氧化碳晶体的焓变函数; (b) Bundles-5带隙和结构参数随压强的变化

    Figure 5.  (a) Enthalpy function of five different kinds of carbon monoxide crystals; (b) band gap and structural parameters vary with pressure of Bundles-5

    图 6  Tube-4—Tube-6的能带结构

    Figure 6.  Band gap of Tube-4−Tube-6

    表 1  CO纳米管的键长dC—CdC—O, 每个CO单元的总能量Etol和形成能Ecoh, 以及纳米管每个原胞中碳原子转移给氧原子的电荷数CCHG—OCHG

    Table 1.  Structural parameters of Tube-3−Tube-7, where dC—C is bond length between carbon atoms, dC—O is bond length between carbon atom and oxygen atom; total energy (Etol) and cohesive energy (Ecoh); electron transfer from carbon atom to oxygen atom (CCHG—OCHG)

    dC—C dC—O Etol/eV·CO–1 Ecoh/eV·CO–1 CCHG—OCHG/e
    Tube-3 1.53 1.40 –14.61 0.16 0.99
    Tube-4 1.58 1.40 –15.01 –0.24 0.99
    Tube-5 1.58 1.41 –15.13 –0.36 0.98
    Tube-6 1.61 1.41 –15.03 –0.25 0.95
    Tube-7 1.64 1.40 –14.84 –0.07 0.96
    Tube-8 1.67 1.40 –14.64 0.13 0.93
    DownLoad: CSV

    表 2  CO纳米管束不同密堆积方式的总能量 (单位: eV/CO)

    Table 2.  Total energy of different dense packing modes of nanometer tube bundles (in eV/CO)

    Bundles-4 Bundles-5 Bundles-6
    Square –15.149 –15.268 –15.159
    Hexagon –15.146 –15.276 –15.161
    DownLoad: CSV
    Baidu
  • [1]

    Ashcroft N W 2004 Phys. Rev. Lett. 92 187002Google Scholar

    [2]

    Yoo C S, Cynn H, Gygi F, Galli G 1999 Phys. Rev. Lett. 83 5527Google Scholar

    [3]

    Eremets M I, Gavriliu K A G, Trojan I A, Dziven Ko D A, Boehler R 2004 Nat. Mater. 3 558Google Scholar

    [4]

    Yoo C S 2013 Phys. Chem. Chem. Phys. 15 7949Google Scholar

    [5]

    Santoro M, Gorelli F A, Bini R, Salamat A, Garbarino G, Levelut C, Cambon O, Haines J 2014 Nat. Commun. 5 3761Google Scholar

    [6]

    Zhou R L, Qu B Y, Dai J, Cheng Z 2014 Phys. Rev. X 4 011030Google Scholar

    [7]

    Evans W J, Lipp M J, Yoo C S, Cynn H 2006 Chem. Mater. 18 10

    [8]

    Schettino V, Roberto B 2003 Phys. Chem. Chem. Phys. 5 1951Google Scholar

    [9]

    Raza Z, Pickard C J, Pinilla C, Saitta A M 2013 Phys. Rev. Lett. 111 235501Google Scholar

    [10]

    Naghavi S S, Crespo Y, Martoná K R, Tosatti1 E 2015 Phys. Rev. B 91 224108Google Scholar

    [11]

    Pic Kard C J, Needs R J 2009 Phys. Rev. Lett. 102 125702Google Scholar

    [12]

    Sun J, Klug D D, Martoná K R, Montoya J A, Lee M S, Scandolo S, Tosatti E 2009 Proc. Natl. Acad. Sci. U.S.A. 106 6077Google Scholar

    [13]

    Boulard E, Pan D, Galli G, Liu Z, Mao W L 2015 Nat. Commun. 6 6311Google Scholar

    [14]

    Lipp M, Evans W J, Garcia-Baonza V, Lorenzana H E 1998 Low Temp. Phys. 111 247Google Scholar

    [15]

    Bernard S, Chiarott G L, Scandolo S, Tosatti E 1998 Phys. Rev. Lett. 81 2092Google Scholar

    [16]

    Sun J, Klug D D, Pic Kard C J, Needs R J 2011 Phys. Rev. Lett. 106 145502Google Scholar

    [17]

    Lipp M J, Evans W J, Baer B J, Yoo C S 2005 Nat. Mater. 4 211Google Scholar

    [18]

    Cromer D T, Schiferl D, Lesar R, Mills R T 1983 Acta Crystallogr C 39 1146Google Scholar

    [19]

    Ma, Y M, Oganov A R, Li Z W, Xie Y, Kota Kos Ki J 2009 Phys. Rev. Lett. 102 065501Google Scholar

    [20]

    Santoro M, Gorelli F A 2006 Chem. Soc. Rev. 35 918Google Scholar

    [21]

    Plašienka D, Martoňák R 2014 Phys. Rev. B 89 134105Google Scholar

    [22]

    Lu C, Miao M, Ma Y 2013 Am. Chem. Soc. 135 14167Google Scholar

    [23]

    Datchi F Mallic K B, Salamat A, Rousse G, Ninet S, Garbarino G, Bouvier P, Mezouar M 2014 Phys. Rev. B 89 144101Google Scholar

    [24]

    Datchi F, Mallic K B, Salamat A, Ninet S 2012 Phys. Rev. Lett. 108 125701Google Scholar

    [25]

    Polian A, Loubeyre P, Boccara N 1989 Simple Molecular System at Very High Density (New York: Plenum Publishing Corporation) pp221−236

    [26]

    Mills R L, Schiferl D, Katz A L, Olinger B W 1984 J. Phys. Colloq. 45 186Google Scholar

    [27]

    Yang N L, Snow A, Haubenstoc K H, Bramwell F B 1978 J. Polymer. Sci. Polymer. Chem. Ed. 16 1909Google Scholar

    [28]

    Ordejón P, Artacho E, Soler J M 1996 Phys. Rev. B 53 10441Google Scholar

    [29]

    Hohenberg P, Kohn W 1964 Phys. Rev. B 136 864Google Scholar

    [30]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [31]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar

    [32]

    Perdew J P, Bur Ke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [33]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [34]

    Heyd J, Scuseria G E, Ernzerhof M J 2006 Chem. Phys. 124 219906

    [35]

    Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207Google Scholar

Metrics
  • Abstract views:  9069
  • PDF Downloads:  75
  • Cited By: 0
Publishing process
  • Received Date:  13 April 2019
  • Accepted Date:  19 July 2019
  • Available Online:  01 November 2019
  • Published Online:  05 November 2019
  • /

    返回文章
    返回
    Baidu
    map