Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Entanglement properties of multi-cascaded beamsplitter and its applications

Jia Fang Zhang Kui-Zheng Hu Yin-Quan Zhang Hao-Liang Hu Li-Yun Fan Hong-Yi

Citation:

Entanglement properties of multi-cascaded beamsplitter and its applications

Jia Fang, Zhang Kui-Zheng, Hu Yin-Quan, Zhang Hao-Liang, Hu Li-Yun, Fan Hong-Yi
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Beam splitter,as a kind of linear optics instruments,has many applications such as in quantum optics and quantum information,including the preparation of nonclassical quantum states and entangled state representation.In Heisenberg picture,on the one hand,the relation of input-output of beam splitter can be easily obtained.Especially for the multicascaded beam-splitters,the input-output relation can also be directly obtained by the input-output relation of single beam splitter.On the other hand,we often need to calculate the probabilities of detecting photon number in many cases,thus we need to turn into Schrdinger picture for simplifying our calculation.Based on the equivalence between both pictures,the relation between transformation matrixes connecting these two pictures is derived.That is to say, the transform matrix corresponding to the Schrdinger picture can be obtained by transposing the transform matrix in Heisenberg picture.This concise relation constructs a bridge connecting two pictures and simplifies our calculation in the Schrdinger picture rather than step by step.Using the relation between transform matrixes of both pictures and combining the technique of integration within ordered product of operator,we further consider the coordination representation,normally ordering form and exponential expression of single beam-splitter.Then we further examine the coordination representation,normally ordering form and exponential expression of two-cascaded beam-splitters.As a generalization,the method is extended to the case of multi-cascaded beam-splitters.These investigations provide an effective way to prepare multi-mode entangled states and qubit states.In addition,a general method is shown of obtaining the total operator and its normally ordering form as well as Schmidt decomposition of the linear systems consisting of beam-splitters.As applications,2-cascaded beam-splitters is used to generate a new quantum mechanics representation and prepare the qubit states with the help of conditional measurement.The Schmidt decomposition of three-mode entangled state representation can be directly obtained by the coordination representation of 2-cascaded beam-splitters,which shows the property of entanglement.In addition,based on this representation we can clearly see that when the input states of first beam splitter are two coordinate states,the output states cannot be entangled.This implies that although the coordinate states are nonclassical,the entangled state can not be prepared either.The new proposed quantum mechanics representation will be further used to investigate the optical transformations,including wavelet transformation,Fourier transform,fractional Fourier transform,et al.Therelevant discussion will be our aim in the future research.
      Corresponding author: Hu Li-Yun, hlyun2008@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11664017, 11264018, 11264018), the Outstanding Young Talent Program of Jiangxi Province, China (Grant No. 20171BCB23034), and the Academic Degree and Postgraduate Education Foundation of Jiangxi Province of China (Grant No. JXYJG-2013-027).
    [1]

    Fan H Y, Klauder J R 1994 Phys. Rev. A 49 704

    [2]

    Fan H Y, Chen J H 2015 Front. Phys. 10 1

    [3]

    Fan H Y, Chen J H, Zhang P F 2015 Front. Phys. 10 187

    [4]

    Jia F, Xu S, Deng C Z, Liu C J, Hu L Y 2016 Front. Phys. 11 110302

    [5]

    Fan H Y 1997 Representation and Transformation Theory in Quantum Mechanics (Shanghai: Shanghai Scientific and Technical Publishers) (in Chinese) [范洪义 1997 量子力 学表象与变换论 (上海: 上海科学技术出版社)]

    [6]

    Hu L Y, Fan H Y 2009 Opt. Commun. 282 4379

    [7]

    Jia F, Liu C J, Hu Y Q, Fan H Y 2016 Acta Phys. Sin. 65 220302 (in Chinese) [贾芳, 刘寸金, 胡银泉, 范洪义 2016 65 220302]

    [8]

    Fan H Y, Liang X T 2001 Phys. Lett. A 291 61

    [9]

    Zheng K M, Liu S Y, Zhang H L, Liu C J, Hu L Y 2014 Front. Phys. 9 451

    [10]

    Li H R, Li F L, Yang Y 2006 Chin. Phys. B 15 2947

    [11]

    He G Q, Zhu S W, Guo H B, Zeng G H 2008 Chin. Phys. B 17 1263

    [12]

    Zhou N R, Li J F, Yu Z B, Gong L H, Farouk A 2017 Quantum Inform. Proc. 16 UNSP4

    [13]

    Gong L H, Song H C, He C S, Liu Y, Zhou N R 2014 Phys. Scripta 89 035101

    [14]

    Bartley T J, Crowley P J D, Datta A, Nunn J, Zhang L, Walmsley I 2013 Phys. Rev. A 87 022313

    [15]

    DellAnno F, de Siena S, Illuminati F 2006 Phys. Rep. 428 53

    [16]

    Liu J B, Wang J J, Xu Z 2017 Chin. Phys. B 26 014201

    [17]

    Hu L Y, Liao Z Y, Zuabiry M S 2017 Phys. Rev. A 95 012310

    [18]

    Ye W, Zhang K Z, Zhang H L, Xu X X, Hu L Y 2018 Laser Phys. Lett. 15 025204

    [19]

    Ouyang Y, Wang S, Zhang L J 2016 J. Opt. Soc. Am. B 33 1373

    [20]

    Joo J, Munro W J, Spiller T P 2011 Phys. Rev. Lett. 107 083601

    [21]

    Hu L Y, Wei C P, Huang J H, Liu C J 2014 Opt. Commun. 323 68

    [22]

    Koniorczyk M, Kurucz Z, Garis A, Janszky J 2000 Phys. Rev. A 62 013802

    [23]

    Paris M G A 2000 Phys. Rev. A 62 033813

    [24]

    Xu X X, Hu L Y, Liao Z Y 2018 J. Opt. Soc. Am. B 35 174

    [25]

    Ralph T C, White A G, Munro W J, Milburn G J 2001 Phys. Rev. A 65 012314

    [26]

    Knill E, Laflamme R, Milburn G J 2001 Nature 409 46

    [27]

    Braunstein S L, van Loock P 2005 Rev. Mod. Phys. 77 513

    [28]

    Hu L Y, Fan H Y 2009 Int. J. Mod. Phys. A 24 2689

    [29]

    Jia F, Xu X X, Liu C J, Huang J H, Hu L Y, Fan H Y 2014 Acta Phys. Sin. 63 220301 (in Chinese) [贾芳, 徐学翔, 刘寸金, 黄接辉, 胡利云, 范洪义 2014 63 220301]

    [30]

    Skaar J, Garca Escartn J C, Landro H 2004 Am. J. Phys. 72 1385

    [31]

    Hu L Y, Fan H Y 2009 Europhys. Lett. 85 60001

    [32]

    Odemir S K, Miranowicz A, Koashi M, Imoto N 2001 Phys. Rev. A 64 063818

  • [1]

    Fan H Y, Klauder J R 1994 Phys. Rev. A 49 704

    [2]

    Fan H Y, Chen J H 2015 Front. Phys. 10 1

    [3]

    Fan H Y, Chen J H, Zhang P F 2015 Front. Phys. 10 187

    [4]

    Jia F, Xu S, Deng C Z, Liu C J, Hu L Y 2016 Front. Phys. 11 110302

    [5]

    Fan H Y 1997 Representation and Transformation Theory in Quantum Mechanics (Shanghai: Shanghai Scientific and Technical Publishers) (in Chinese) [范洪义 1997 量子力 学表象与变换论 (上海: 上海科学技术出版社)]

    [6]

    Hu L Y, Fan H Y 2009 Opt. Commun. 282 4379

    [7]

    Jia F, Liu C J, Hu Y Q, Fan H Y 2016 Acta Phys. Sin. 65 220302 (in Chinese) [贾芳, 刘寸金, 胡银泉, 范洪义 2016 65 220302]

    [8]

    Fan H Y, Liang X T 2001 Phys. Lett. A 291 61

    [9]

    Zheng K M, Liu S Y, Zhang H L, Liu C J, Hu L Y 2014 Front. Phys. 9 451

    [10]

    Li H R, Li F L, Yang Y 2006 Chin. Phys. B 15 2947

    [11]

    He G Q, Zhu S W, Guo H B, Zeng G H 2008 Chin. Phys. B 17 1263

    [12]

    Zhou N R, Li J F, Yu Z B, Gong L H, Farouk A 2017 Quantum Inform. Proc. 16 UNSP4

    [13]

    Gong L H, Song H C, He C S, Liu Y, Zhou N R 2014 Phys. Scripta 89 035101

    [14]

    Bartley T J, Crowley P J D, Datta A, Nunn J, Zhang L, Walmsley I 2013 Phys. Rev. A 87 022313

    [15]

    DellAnno F, de Siena S, Illuminati F 2006 Phys. Rep. 428 53

    [16]

    Liu J B, Wang J J, Xu Z 2017 Chin. Phys. B 26 014201

    [17]

    Hu L Y, Liao Z Y, Zuabiry M S 2017 Phys. Rev. A 95 012310

    [18]

    Ye W, Zhang K Z, Zhang H L, Xu X X, Hu L Y 2018 Laser Phys. Lett. 15 025204

    [19]

    Ouyang Y, Wang S, Zhang L J 2016 J. Opt. Soc. Am. B 33 1373

    [20]

    Joo J, Munro W J, Spiller T P 2011 Phys. Rev. Lett. 107 083601

    [21]

    Hu L Y, Wei C P, Huang J H, Liu C J 2014 Opt. Commun. 323 68

    [22]

    Koniorczyk M, Kurucz Z, Garis A, Janszky J 2000 Phys. Rev. A 62 013802

    [23]

    Paris M G A 2000 Phys. Rev. A 62 033813

    [24]

    Xu X X, Hu L Y, Liao Z Y 2018 J. Opt. Soc. Am. B 35 174

    [25]

    Ralph T C, White A G, Munro W J, Milburn G J 2001 Phys. Rev. A 65 012314

    [26]

    Knill E, Laflamme R, Milburn G J 2001 Nature 409 46

    [27]

    Braunstein S L, van Loock P 2005 Rev. Mod. Phys. 77 513

    [28]

    Hu L Y, Fan H Y 2009 Int. J. Mod. Phys. A 24 2689

    [29]

    Jia F, Xu X X, Liu C J, Huang J H, Hu L Y, Fan H Y 2014 Acta Phys. Sin. 63 220301 (in Chinese) [贾芳, 徐学翔, 刘寸金, 黄接辉, 胡利云, 范洪义 2014 63 220301]

    [30]

    Skaar J, Garca Escartn J C, Landro H 2004 Am. J. Phys. 72 1385

    [31]

    Hu L Y, Fan H Y 2009 Europhys. Lett. 85 60001

    [32]

    Odemir S K, Miranowicz A, Koashi M, Imoto N 2001 Phys. Rev. A 64 063818

  • [1] Wang Lei, Li Hong-Qi, Xu Xing-Lei, Xu Shi-Min, Wang Ji-Suo. Ordering positive and negative exponential power operators by virtue of special functions and analogy method. Acta Physica Sinica, 2021, 70(4): 040302. doi: 10.7498/aps.70.20201652
    [2] Zhang Ke, Fan Cheng-Yu, Fan Hong-Yi. Invariant eigen-operator calculated vibration mode of lattice in the case of absorbing an atom onto crystal surface. Acta Physica Sinica, 2018, 67(17): 170301. doi: 10.7498/aps.67.20180469
    [3] Jia Fang, Xu Xue-Xiang, Liu Cun-Jin, Huang Jie-Hui, Hu Li-Yun, Fan Hong-Yi. Decompositions of beam splitter operator and its entanglement function. Acta Physica Sinica, 2014, 63(22): 220301. doi: 10.7498/aps.63.220301
    [4] Li Xue-Chao, Yang Yang, Fan Hong-Yi. Weyl ordering expansion for optical field phase operator and inverse operators. Acta Physica Sinica, 2013, 62(8): 080301. doi: 10.7498/aps.62.080301
    [5] Yu Hai-Jun, Zhong Guo-Bao, Ma Jian-Guo, Ren Gang. Ridgelet transform for quantum optical states. Acta Physica Sinica, 2013, 62(14): 144203. doi: 10.7498/aps.62.144203
    [6] Yu Hai-Jun, Zhong Guo-Bao, Ma Jian-Guo, Ren Gang. Theory of complex ridgelet transform based on the entangled state. Acta Physica Sinica, 2013, 62(17): 174205. doi: 10.7498/aps.62.174205
    [7] Fan Hong-Yi, Li Xue-Chao. The physical significances and applications of Schmidt decompositions of continuum bipartile entangled state representation. Acta Physica Sinica, 2012, 61(20): 200301. doi: 10.7498/aps.61.200301
    [8] Ye Qian, Chen Qian-Fan, Fan Hong-Yi. Integral-form solution of the Caldeira-Leggett density operator equation obtained by virtue of thermo entangled state representation. Acta Physica Sinica, 2012, 61(21): 210301. doi: 10.7498/aps.61.210301
    [9] Wang Shu-Jing, Ma Shan-Jun. A new three-mode entangled state representation generated by beamsplitter and polarizer. Acta Physica Sinica, 2011, 60(3): 030302. doi: 10.7498/aps.60.030302
    [10] Shangguan Li-Ying, Sun Hong-Xiang, Chen Xiu-Bo, Wen Qiao-Yan, Zhu Fu-Chen. The expansion of orthogonal complete set and transformation operator in the teleportation of a three-particle entangled W state. Acta Physica Sinica, 2009, 58(3): 1371-1376. doi: 10.7498/aps.58.1371
    [11] Zhou Nan-Run, Gong Li-Hua, Jia Fang. Deriving operator identities by two-mode coherent-entangled state representation. Acta Physica Sinica, 2009, 58(4): 2179-2183. doi: 10.7498/aps.58.2179
    [12] Li Ti-Jun. Integration over entangled state projective operators. Acta Physica Sinica, 2009, 58(6): 3665-3669. doi: 10.7498/aps.58.3665
    [13] Li Ti-Jun. Expressions of coordinate eigen vectors and their integration over non-symmetric coordinate projective operators. Acta Physica Sinica, 2008, 57(7): 3969-3972. doi: 10.7498/aps.57.3969
    [14] Shao Dan, Shao Liang, Shao Chang-Gui, H.Noda. Eigenaction of metric operator on Gaussian weave state and spin-geometry. Acta Physica Sinica, 2007, 56(3): 1271-1291. doi: 10.7498/aps.56.1271
    [15] Zha Xin-Wei. The expansion of orthogonal complete set and transformation operator in teleportation. Acta Physica Sinica, 2007, 56(4): 1875-1880. doi: 10.7498/aps.56.1875
    [16] Yang Qing-yi, Wei Lian-Fu, Ding Liang-En. Boson inverse operators and associated even and odd coherent states. Acta Physica Sinica, 2003, 52(6): 1390-1395. doi: 10.7498/aps.52.1390
    [17] TAN WEI-HAN, LIU JUAN. PHASE OPERATOR AND PHASE STATES FOR FINITE ENERGY SYSTEM. Acta Physica Sinica, 1997, 46(12): 2348-2358. doi: 10.7498/aps.46.2348
    [18] WANG JI-SUO. MATHEMATICAL STRUCTURE OF THE EIGENSTATES OF OPERATOR ak AND THEIR PROPERTIES. Acta Physica Sinica, 1991, 40(4): 547-554. doi: 10.7498/aps.40.547
    [19] LIU AI-ZHUO, PEI FENG-KUI. DENSITY OPERATOR FORMALISM FOR SPIN SYSTEMS WITH PERMUTATION SYMMETRY IN MULTIPLE PULSE AND 2D NMR EXPERIMENTS (Ⅱ)——MULTIPLE QUANTUM PRODUCT OPERATOR FORMALISM. Acta Physica Sinica, 1990, 39(8): 154-161. doi: 10.7498/aps.39.154-2
    [20] SUN FENG-JIU. REPRESENTATION TRANSFORMATION AND THE GENERAL METHOD FOR SOLVING OPTICAL RELATION EQUATIONS IN OPERATOR OPTICS. Acta Physica Sinica, 1989, 38(4): 653-658. doi: 10.7498/aps.38.653
Metrics
  • Abstract views:  6141
  • PDF Downloads:  125
  • Cited By: 0
Publishing process
  • Received Date:  28 February 2018
  • Accepted Date:  11 April 2018
  • Published Online:  05 August 2018

/

返回文章
返回
Baidu
map