Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ground penetrating radar numerical simulation with interpolating wavelet scales method and research on fourth-order Runge-Kutta auxiliary differential equation perfectly matched layer

Feng De-Shan Yang Dao-Xue Wang Xun

Citation:

Ground penetrating radar numerical simulation with interpolating wavelet scales method and research on fourth-order Runge-Kutta auxiliary differential equation perfectly matched layer

Feng De-Shan, Yang Dao-Xue, Wang Xun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Ground penetrating radar (GPR) forward is one of the geophysical research directions.Through the forward of geological model,the database of radar model can be enriched and the characteristics of typical geological radar echo images can be understood,which in turn can guide the data interpretation of GPR measured profile,thereby improving the GPR data interpretation level.In this article,the interpolating wavelet scale function by using iterative interpolation method is presented,and the derivative of scale function is used in spatial differentiation of discrete Maxwell equations. The forward modeling formula of GPR based on the interpolation wavelet scale method is derived by using fourth-order Runge-Kutta method (RK4) for calculating the higher time derivative.Compared with the conventional finite difference time domain (FDTD) algorithm based on the central difference method,the interpolation wavelet scale algorithm improves the accuracy of GPR wave equation in both space and time discretization.Firstly,the FDTD algorithm and the interpolation wavelet scale method are applied to the forward modeling of a layered model with analytic solution. Single channel radar data and analytical solution fitting indicate that the interpolation wavelet scale method has higher accuracy than FDTD,with the same mesh generation used.Therefore,auxiliary differential equation perfectly matching layer (ADE-PML) boundary condition is used on an interpolation wavelet scale,and the comparisons between reflection errors obtained using CPML (FDTD),RK4ADE-PML (FDTD),and RK4ADE-PML (interpolating wavelet scales) in a homogeneous medium model show that the absorption effect of RK4ADE-PML (interpolating wavelet scales) is better than the other two absorbing boundaries.Finally,interpolation wavelet scale method,with both UPML,FDTD and RK4ADE-PML loaded,is used for two-dimensional GPR forward modeling,showing good absorption effect for evanescent wave.From all the experimental results,the following conclusions are obtained.1) Using the derivative of the interpolating wavelet scale function instead of central difference schemes for the spatial derivative discretization of Maxwell equations and time derivative calculated using the fourth-order Runge Kutta algorithm,the interpolating wavelet scale algorithm has higher accuracy than regular FDTD algorithm due to the improvement in the spatial and time accuracy of GPR wave equation.2) The best absorption layer parameters of interpolating wavelet scale RK4ADE-PML are selected, when the maximum value of the reflection error is the minimum.The maximum reflection error can reach-93 dB,which increases 20 dB compared with that of UMPL boundary in FDTD algorithm.And the higher simulation accuracy of interpolating wavelet scale algorithm than FDTD algorithm is confirmed after calculating single channel radar data.3) Comparing wave field snapshots of GPR forward modeling,radar pictures from wide-angle method and section method indicates that interpolating wavelet scale RK4ADE-PML reduces reflection error of absorption boundary,improves both spatial and time accuracy,is more effective than UPML boundary in eliminating false reflection of large angle incidence, and has better absorption effect for evanescent wave and low-frequency wave.
      Corresponding author: Feng De-Shan, fengdeshan@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 41574116), the Innovation Driven of Central South University, China (Grant No. 2015CX008), the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-12-0551), the Research Foundation of Central South University, China (Grant No. 2014JSJJ001), and the Shenghua Yuying project of Central South University, China.
    [1]

    Li J 2014 Ph. D. Dissertation (Changchun:Jilin University) (in Chinese)[李静2014博士学位论文(长春:吉林大学)]

    [2]

    Feng D S, Chen J W, Wu Q 2014 Chin. J. Geophys. 57 1322 (in Chinese)[冯德山, 陈佳维, 吴奇2014地球 57 1322]

    [3]

    Irving J, Knight R 2006 Comput. Geosci. 32 1247

    [4]

    Liu S X, Zeng Z F 2007 Chin. J. Geophys. 50 320 (in Chinese)[刘四新, 曾昭发2007地球 50 320]

    [5]

    Diamanti N, Giannopoulos A 2009 J. Appl. Geophys. 67 309

    [6]

    Teixeira F L 2008 IEEE Trans. Antennas and Propag. 56 2150

    [7]

    Feng D S, Chen C S, Dai Q W 2010 Chin. J. Geophys. 53 2484 (in Chinese)[冯德山, 陈承申, 戴前伟2010地球 53 2484]

    [8]

    Li J, Zeng Z F, Liu S X 2012 Comput. Geosci. 49 121

    [9]

    Wei B, Li X Y, Wang F, Ge D B 2009 Acta Phys. Sin. 58 6174 (in Chinese)[魏兵, 李小勇, 王飞, 葛德彪2009 58 6174]

    [10]

    Di Q Y, Wang M Y 1999 Chin. J. Geophys. 42 818 (in Chinese)[底青云, 王妙月1999地球 42 818]

    [11]

    Li Z H, Huang Q H, Wang Y B 2009 Chin. J. Geophys. 52 1915 (in Chinese)[李展辉, 黄清华, 王彦宾2009地球 52 1915]

    [12]

    Zhuan S X, Ma X K 2012 Acta Phys. Sin. 61 110206 (in Chinese)[颛孙旭, 马西奎2012 61 110206]

    [13]

    Xu L J, Liu S B, Mo J J, Yuan N C 2006 Acta Phys. Sin. 55 3470 (in Chinese)[徐利军, 刘少斌, 莫锦军, 袁乃昌2006 55 3470]

    [14]

    Vivek K, Mani M 2006 J. Comput. Appl. Math. 230 803

    [15]

    Pedro P, Margarete O D, Paulo J S G F, Sônia M G, Anamaria G, José R P 2007 IEEE Trans. Magn. 43 1013

    [16]

    Marta D L L P, Stewart C, Robert P 2012 J. Comput. Phys. 231 6754

    [17]

    Rodrigo B B, Marco A C S, Raul R E S 2013 Finite Elem. Anal. Des. 75 71

    [18]

    Martin R, Komatitsch D, Gedney S D, Bruthiaux E 2010 CMES 56 17

    [19]

    Zhang W, Shen Y 2010 Geophysics 75 141

    [20]

    Zhao J G 2014 Jilin University 44 675 (in Chinese)[赵建国2014吉林大学学报44 675]

    [21]

    Li J X 2007 Ph. D. Dissertation (Tianjin:Tianjin University) (in Chinese)[李建雄2007博士学位论文(天津:天津大学)]

    [22]

    Deslauriers G, Dubuc S 1989 Constr. Approx. 5 49

    [23]

    Dubuc 1986 Math. Anal. Appl. 114 185

    [24]

    Satio N, Beylkin G 1993 IEEE Trans. Signal Process. 41 319

    [25]

    Sweldens W 1996 Appl. Comput. Harmon. Anal. 3 186

    [26]

    M Sc Hao J L 2011 Ph. D. Dissertation (Zur Erlangung des akademischen Grades eines)

    [27]

    Ge D B, Yan Y B 2005 Finite-Differeence Time-Domain Method for Electromagnetic Waves (Xi'an:Xidian University Press) p31(in Chinese)[葛德彪, 闫玉波2005电磁波时域有限差分方法(西安:西安电子科技大学出版社)第31页]

  • [1]

    Li J 2014 Ph. D. Dissertation (Changchun:Jilin University) (in Chinese)[李静2014博士学位论文(长春:吉林大学)]

    [2]

    Feng D S, Chen J W, Wu Q 2014 Chin. J. Geophys. 57 1322 (in Chinese)[冯德山, 陈佳维, 吴奇2014地球 57 1322]

    [3]

    Irving J, Knight R 2006 Comput. Geosci. 32 1247

    [4]

    Liu S X, Zeng Z F 2007 Chin. J. Geophys. 50 320 (in Chinese)[刘四新, 曾昭发2007地球 50 320]

    [5]

    Diamanti N, Giannopoulos A 2009 J. Appl. Geophys. 67 309

    [6]

    Teixeira F L 2008 IEEE Trans. Antennas and Propag. 56 2150

    [7]

    Feng D S, Chen C S, Dai Q W 2010 Chin. J. Geophys. 53 2484 (in Chinese)[冯德山, 陈承申, 戴前伟2010地球 53 2484]

    [8]

    Li J, Zeng Z F, Liu S X 2012 Comput. Geosci. 49 121

    [9]

    Wei B, Li X Y, Wang F, Ge D B 2009 Acta Phys. Sin. 58 6174 (in Chinese)[魏兵, 李小勇, 王飞, 葛德彪2009 58 6174]

    [10]

    Di Q Y, Wang M Y 1999 Chin. J. Geophys. 42 818 (in Chinese)[底青云, 王妙月1999地球 42 818]

    [11]

    Li Z H, Huang Q H, Wang Y B 2009 Chin. J. Geophys. 52 1915 (in Chinese)[李展辉, 黄清华, 王彦宾2009地球 52 1915]

    [12]

    Zhuan S X, Ma X K 2012 Acta Phys. Sin. 61 110206 (in Chinese)[颛孙旭, 马西奎2012 61 110206]

    [13]

    Xu L J, Liu S B, Mo J J, Yuan N C 2006 Acta Phys. Sin. 55 3470 (in Chinese)[徐利军, 刘少斌, 莫锦军, 袁乃昌2006 55 3470]

    [14]

    Vivek K, Mani M 2006 J. Comput. Appl. Math. 230 803

    [15]

    Pedro P, Margarete O D, Paulo J S G F, Sônia M G, Anamaria G, José R P 2007 IEEE Trans. Magn. 43 1013

    [16]

    Marta D L L P, Stewart C, Robert P 2012 J. Comput. Phys. 231 6754

    [17]

    Rodrigo B B, Marco A C S, Raul R E S 2013 Finite Elem. Anal. Des. 75 71

    [18]

    Martin R, Komatitsch D, Gedney S D, Bruthiaux E 2010 CMES 56 17

    [19]

    Zhang W, Shen Y 2010 Geophysics 75 141

    [20]

    Zhao J G 2014 Jilin University 44 675 (in Chinese)[赵建国2014吉林大学学报44 675]

    [21]

    Li J X 2007 Ph. D. Dissertation (Tianjin:Tianjin University) (in Chinese)[李建雄2007博士学位论文(天津:天津大学)]

    [22]

    Deslauriers G, Dubuc S 1989 Constr. Approx. 5 49

    [23]

    Dubuc 1986 Math. Anal. Appl. 114 185

    [24]

    Satio N, Beylkin G 1993 IEEE Trans. Signal Process. 41 319

    [25]

    Sweldens W 1996 Appl. Comput. Harmon. Anal. 3 186

    [26]

    M Sc Hao J L 2011 Ph. D. Dissertation (Zur Erlangung des akademischen Grades eines)

    [27]

    Ge D B, Yan Y B 2005 Finite-Differeence Time-Domain Method for Electromagnetic Waves (Xi'an:Xidian University Press) p31(in Chinese)[葛德彪, 闫玉波2005电磁波时域有限差分方法(西安:西安电子科技大学出版社)第31页]

  • [1] Zhong Ming, Tian Shou-Fu, Shi Yi-Qing. Application of the modified variational iteration method in the fourth-order Cahn-Hilliard equation BBM-Burgers equation. Acta Physica Sinica, 2021, 70(19): 190202. doi: 10.7498/aps.70.20202147
    [2] Li Min, Wang Bo-Ting, Xu Tao, Shui Juan-Juan. Study on the generation mechanism of bright and dark solitary waves and rogue wave for a fourth-order dispersive nonlinear Schrödinger equation. Acta Physica Sinica, 2020, 69(1): 010502. doi: 10.7498/aps.69.20191384
    [3] Li Jing-He, He Zhan-Xiang, Yang Jun, Meng Shu-Jun, Li Wen-Jie, Liao Xiao-Qian. Scale and rotation statistic-based self-adaptive function for ground penetrating radar denoising in curvelet domain. Acta Physica Sinica, 2019, 68(9): 090501. doi: 10.7498/aps.68.20182061
    [4] Du Chao-Fan, Zhang Ding-Guo. A meshfree method based on point interpolation for dynamic analysis of rotating cantilever beams. Acta Physica Sinica, 2015, 64(3): 034501. doi: 10.7498/aps.64.034501
    [5] Du Hong-Xiu, Wei Hong, Qin Yi-Xiao, Li Zhong-Hua, Wang Tong-Zun. Interpolating particle method for mechanical analysis of space axisymmetric components. Acta Physica Sinica, 2015, 64(10): 100204. doi: 10.7498/aps.64.100204
    [6] Chen Xiao, Wang Chen-Long. Noise suppression for Lamb wave signals by Tsallis mode and fractional-order differential. Acta Physica Sinica, 2014, 63(18): 184301. doi: 10.7498/aps.63.184301
    [7] Chen Hao, Hua Deng-Xin, Zhang Yi-Kun, Zhu Cheng-Xuan. A method of vertical and horizontal plus cubic spline interpolation for Mie scattering lidar profile data. Acta Physica Sinica, 2014, 63(15): 154204. doi: 10.7498/aps.63.154204
    [8] Li Xue-Ping, Ji Yi-Cai, Lu Wei, Fang Guang-You. Characteristics of electromagnetic scattering from the vehicle-mounted ground penetrating radar in layered media. Acta Physica Sinica, 2014, 63(4): 044201. doi: 10.7498/aps.63.044201
    [9] Liu Shi-Xing, Song Duan, Jia Lin, Liu Chang, Guo Yong-Xin. Application research of symplectic Runge-Kutta method of solving Lagrange-Maxwell equation. Acta Physica Sinica, 2013, 62(3): 034501. doi: 10.7498/aps.62.034501
    [10] Ai Wei-Hua, Kong Yi, Zhao Xian-Bin. Ocean surface wind direction retrieval from multi-polarization airborne SAR based on wavelet. Acta Physica Sinica, 2012, 61(14): 148403. doi: 10.7498/aps.61.148403
    [11] Lu Si-Long, Wu Xian-Liang, Ren Xin-Gang, Mei Yi-Cai, Shen Jing, Huang Zhi-Xiang. Study of periodic dispersive structures using splitfield FDTD method. Acta Physica Sinica, 2012, 61(19): 194701. doi: 10.7498/aps.61.194701
    [12] Li Zhong-Hua, Qin Yi-Xiao, Cui Xiao-Chao. Interpolating reproducing kernel particle method for elastic mechanics. Acta Physica Sinica, 2012, 61(8): 080205. doi: 10.7498/aps.61.080205
    [13] Wang Ze-Feng, Hu Yong-Ming, Meng Zhou, Luo Hong, Ni Ming. Frequency response of fourth-order acoustic low-pass filtering fiber-optic hydrophones. Acta Physica Sinica, 2009, 58(10): 7034-7043. doi: 10.7498/aps.58.7034
    [14] Wang Ming-Jun, Li Ying-Le, Wu Zhen-Sen, Zhang Hui, Zhang Xiao-An. The fourth order moment statistical characteristic of the laser pulse scattering on random rough surface. Acta Physica Sinica, 2009, 58(4): 2390-2396. doi: 10.7498/aps.58.2390
    [15] Yu Si-Min. Fourth-order Colpitts chaotic oscillator. Acta Physica Sinica, 2008, 57(6): 3374-3379. doi: 10.7498/aps.57.3374
    [16] Li Min-Quan, Tao Xiao-Jun, Zhao Jin, Wu Xian-Liang. Radar cross section computation using symplectic Runge-Kutta-Nystrom method. Acta Physica Sinica, 2007, 56(4): 2115-2118. doi: 10.7498/aps.56.2115
    [17] MA JIAN-WEI, YANG HUI-ZHU, ZHU YA-PING. SIMULATION OF ACOUSTIC WAVE PROPAGATION IN COMPLEX MEDIA USING MRFD METHOD. Acta Physica Sinica, 2001, 50(8): 1415-1420. doi: 10.7498/aps.50.1415
    [18] ZHANG JUN-XIANG, HE LING-XIANG, ZHANG TIAN-CAI, XIE CHANG-DE, PENG KUN-CHI. THE FOURTH-ORDER INTERFERENCE BETWEEN TWO INDEPENDENT SQUEEZED FIELDS. Acta Physica Sinica, 1999, 48(7): 1230-1235. doi: 10.7498/aps.48.1230
    [19] LIN ZUN-QI, ZHANG HUI-HUANG, HE XING-FA, LIN KANG-CHUN, WANG XIAO-QIN, ZHUANG YI-FEI, WANG LIU-SHUI, WEI XIAO-CHUN, LU QI-RONG, SHI A-YING, DAI MEI-LAN, TIAN LI, FAN GEN-LIANG, LI JIA-MING. EFFECT OF THE SMALL ACCESSARY LASER SPOTS ON THE HARMONIC EMISSION STIMULATED BY SELF-FOCUSING OF A 10-MICROMETER SCALE LASER SPOT. Acta Physica Sinica, 1992, 41(6): 898-909. doi: 10.7498/aps.41.898
    [20] LU QI-SHAO. SPATIALLY PERIODIC STRUCTURES OF A FOURTH ORDER REACTION-DIFFUSION SYSTEM WITH DIFFUSION INSTABILITY. Acta Physica Sinica, 1989, 38(12): 1901-1910. doi: 10.7498/aps.38.1901
Metrics
  • Abstract views:  7143
  • PDF Downloads:  214
  • Cited By: 0
Publishing process
  • Received Date:  28 May 2016
  • Accepted Date:  30 August 2016
  • Published Online:  05 December 2016

/

返回文章
返回
Baidu
map