Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dynamical analysis of Duffing oscillator with fractional-order feedback with time delay

Wen Shao-Fang Shen Yong-Jun Yang Shao-Pu

Citation:

Dynamical analysis of Duffing oscillator with fractional-order feedback with time delay

Wen Shao-Fang, Shen Yong-Jun, Yang Shao-Pu
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • With increasingly strict requirements for control speed and system performance, the unavoidable time delay becomes a serious problem. Fractional-order feedback is constantly adopted in control engineering due to its advantages, such as robustness, strong de-noising ability and better control performance. In this paper, the dynamical characteristics of an autonomous Duffing oscillator under fractional-order feedback coupling with time delay are investigated. At first, the first-order approximate analytical solution is obtained by the averaging method. The equivalent stiffness and equivalent damping coefficients are defined by the feedback coefficient, fractional order and time delay. It is found that the fractional-order feedback coupling with time delay has the functions of both delayed velocity feedback and delayed displacement feedback simultaneously. Then, the comparison between the analytical solution and the numerical one verifies the correctness and satisfactory precision of the approximately analytical solution under three parameter conditions respectively. The effects of the feedback coefficient, fractional order and nonlinear stiffness coefficient on the complex dynamical behaviors are analyzed, including the locations of bifurcation points, the stabilities of the periodic solutions, the existence ranges of the periodic solutions, the stability of zero solution and the stability switch times. It is found that the increase of fractional order could make the delay-amplitude curves of periodic solutions shift rightwards, but the stabilities of the periodic solutions and the stability switch times of zero solution cannot be changed. The decrease of the feedback coefficient makes the amplitudes and ranges of the periodic solutions become larger, and induces the stability switch times of zero solution to decrease, but the stabilities of the periodic solutions keep unchanged. The sign of the nonlinear stiffness coefficient determines the stabilities and the bending directions of delay-amplitude curves of periodic solutions, but the bifurcation points, the stability of zero solution and the stability switch times are not changed. It could be concluded that the primary system parameters have important influences on the dynamical behavior of Duffing oscillator, and the results are very helpful to design, analyze or control this kind of system. The analysis procedure and conclusions could provide a reference for the study on the similar fractional-order dynamic systems with time delays.
      Corresponding author: Shen Yong-Jun, shenyongjun@126.com
    • Funds: Project supported by National Natural Science Foundation of China (Grant No. 11372198), the Cultivation plan for Innovation Team and Leading Talent in Colleges and Universities of Hebei Province, China (Grant No. LJRC018), the Program for Advanced Talent in the Universities of Hebei Province, China (Grant No. GCC2014053), and the Program for Advanced Talent in Hebei Province, China (Grant No. A201401001).
    [1]

    Gorenflo R, Abdel-Rehim E A 2007 J. Comput. Appl. Math. 205 871

    [2]

    Jumarie G 2006 Comput. Math. Appl. 51 1367

    [3]

    Ishteva M, Scherer R, Boyadjiev L 2005 Math. Sci. Res. J. 2005 9 161

    [4]

    Agnieszka B M, Delfim F M T 2011 Fract. Calc. Appl. Anal. 14 523

    [5]

    Leung A Y T, Guo Z J, Yang H X 2012 J. Sound Vib. 331 1115

    [6]

    Yang J H, Zhu H 2013 Acta Phys. Sin. 62 024501 (in Chinese) [杨建华, 朱华 2013 62 024501]

    [7]

    Zhou Y, Ionescu C, Machado J A T 2015 Nonlinear Dyn. 80 1661

    [8]

    Wang Z H, Hu H Y 2009 Sci. China G: Phys. Mech. Astron. 39 1495 (in Chinese) [王在华, 胡海岩 2009 中国科学G辑: 物理学 力学 天文学 39 1495]

    [9]

    Wang Z H, Du M L 2011 Shock Vib. 18 257

    [10]

    Shen Y J, Wei P, Yang S P 2014 Nonlinear Dyn. 77 1629

    [11]

    Shen Y J, Yang S P, Xing H J 2012 Acta Phys. Sin. 61 150503 (in Chinese) [申永军, 杨绍普, 邢海军 2012 61 150503]

    [12]

    Shen Y J, Yang S P, Xing H J 2012 Acta Phys. Sin. 61 110505 (in Chinese) [申永军, 杨绍普, 邢海军 2012 61 110505]

    [13]

    Shen Y J, Yang S P, Xing H J, Gao G S 2012 Commun. Nolinear Sci. 17 3092

    [14]

    Shen Y J, Yang S P, Xing H J, Ma H X 2012 Int. J. Nonlin. Mech. 47 975

    [15]

    Li C P, Deng W H 2007 Appl. Math. Comput. 187 777

    [16]

    Deng W H, Li C P 2008 Phys. Lett. 372 401

    [17]

    Li Q D, Chen S, Zhou P 2011 Chin. Phys. B 20 010502

    [18]

    Chen L C, Hu F, Zhu W Q 2013 Fract. Calc. Appl. Anal. 05 189

    [19]

    Wahi P, Chatterjee A 2004 Nonlinear Dyn. 38 3

    [20]

    Yin H, Chen N 2012 Chin. J. Comput. Mech. 29 966 (in Chinese) [银花, 陈宁 2012 计算力学学报 29 966]

    [21]

    Xu Y, Li Y G, Liu D 2013 Nonlinear Dyn. 74 745

    [22]

    Zhang R X, Yang S P 2009 Chin. Phys. B 18 3295

    [23]

    Zhang R R, Xu W, Yang G D 2015 Chin. Phys. B 24 020204

    [24]

    Hale J K, Lunel S M V 1993 Introduction to Functional Differential Equations (New York: Springer-Verlag) p6

    [25]

    Hu H Y, Wang Z H 2002 Dynamics of Controlled Mechanical Systems with Delayed Feedback (Berlin: Springer) p213

    [26]

    Wang Z H, Hu H Y 2000 J. Sound Vib. 233 215

    [27]

    Wang H L, Hu H Y 2003 Nonlinear Dyn. 33 379

    [28]

    Shi M, Wang Z H 2011 Automatica 47 2001

    [29]

    Babakhani A, Baleanu D, Khanbabaie R 2012 Nonlinear Dyn. 69 721

    [30]

    elik V, Demir Y 2014 Signal Image Video P. 8 65

    [31]

    Petras I 2011 Fractional-order Nonlinear Systems: Modeling, Analysis and Simulation (Beijing: Higher Education Press) p19

  • [1]

    Gorenflo R, Abdel-Rehim E A 2007 J. Comput. Appl. Math. 205 871

    [2]

    Jumarie G 2006 Comput. Math. Appl. 51 1367

    [3]

    Ishteva M, Scherer R, Boyadjiev L 2005 Math. Sci. Res. J. 2005 9 161

    [4]

    Agnieszka B M, Delfim F M T 2011 Fract. Calc. Appl. Anal. 14 523

    [5]

    Leung A Y T, Guo Z J, Yang H X 2012 J. Sound Vib. 331 1115

    [6]

    Yang J H, Zhu H 2013 Acta Phys. Sin. 62 024501 (in Chinese) [杨建华, 朱华 2013 62 024501]

    [7]

    Zhou Y, Ionescu C, Machado J A T 2015 Nonlinear Dyn. 80 1661

    [8]

    Wang Z H, Hu H Y 2009 Sci. China G: Phys. Mech. Astron. 39 1495 (in Chinese) [王在华, 胡海岩 2009 中国科学G辑: 物理学 力学 天文学 39 1495]

    [9]

    Wang Z H, Du M L 2011 Shock Vib. 18 257

    [10]

    Shen Y J, Wei P, Yang S P 2014 Nonlinear Dyn. 77 1629

    [11]

    Shen Y J, Yang S P, Xing H J 2012 Acta Phys. Sin. 61 150503 (in Chinese) [申永军, 杨绍普, 邢海军 2012 61 150503]

    [12]

    Shen Y J, Yang S P, Xing H J 2012 Acta Phys. Sin. 61 110505 (in Chinese) [申永军, 杨绍普, 邢海军 2012 61 110505]

    [13]

    Shen Y J, Yang S P, Xing H J, Gao G S 2012 Commun. Nolinear Sci. 17 3092

    [14]

    Shen Y J, Yang S P, Xing H J, Ma H X 2012 Int. J. Nonlin. Mech. 47 975

    [15]

    Li C P, Deng W H 2007 Appl. Math. Comput. 187 777

    [16]

    Deng W H, Li C P 2008 Phys. Lett. 372 401

    [17]

    Li Q D, Chen S, Zhou P 2011 Chin. Phys. B 20 010502

    [18]

    Chen L C, Hu F, Zhu W Q 2013 Fract. Calc. Appl. Anal. 05 189

    [19]

    Wahi P, Chatterjee A 2004 Nonlinear Dyn. 38 3

    [20]

    Yin H, Chen N 2012 Chin. J. Comput. Mech. 29 966 (in Chinese) [银花, 陈宁 2012 计算力学学报 29 966]

    [21]

    Xu Y, Li Y G, Liu D 2013 Nonlinear Dyn. 74 745

    [22]

    Zhang R X, Yang S P 2009 Chin. Phys. B 18 3295

    [23]

    Zhang R R, Xu W, Yang G D 2015 Chin. Phys. B 24 020204

    [24]

    Hale J K, Lunel S M V 1993 Introduction to Functional Differential Equations (New York: Springer-Verlag) p6

    [25]

    Hu H Y, Wang Z H 2002 Dynamics of Controlled Mechanical Systems with Delayed Feedback (Berlin: Springer) p213

    [26]

    Wang Z H, Hu H Y 2000 J. Sound Vib. 233 215

    [27]

    Wang H L, Hu H Y 2003 Nonlinear Dyn. 33 379

    [28]

    Shi M, Wang Z H 2011 Automatica 47 2001

    [29]

    Babakhani A, Baleanu D, Khanbabaie R 2012 Nonlinear Dyn. 69 721

    [30]

    elik V, Demir Y 2014 Signal Image Video P. 8 65

    [31]

    Petras I 2011 Fractional-order Nonlinear Systems: Modeling, Analysis and Simulation (Beijing: Higher Education Press) p19

  • [1] Ni Long, Chen Xiao. Mode separation for multimode Lamb waves based on dispersion compensation and fractional differential. Acta Physica Sinica, 2018, 67(20): 204301. doi: 10.7498/aps.67.20180561
    [2] Gao Fei, Hu Dao-Nan, Tong Heng-Qing, Wang Chuan-Mei. Chaotic analysis of fractional Willis delayed aneurysm system. Acta Physica Sinica, 2018, 67(15): 150501. doi: 10.7498/aps.67.20180262
    [3] Chen Xiao, Wang Chen-Long. Noise suppression for Lamb wave signals by Tsallis mode and fractional-order differential. Acta Physica Sinica, 2014, 63(18): 184301. doi: 10.7498/aps.63.184301
    [4] Zhang Lu, Xie Tian-Ting, Luo Mao-Kang. Vibrational resonance in a Duffing system with fractional-order external and intrinsic dampings driven by the two-frequency signals. Acta Physica Sinica, 2014, 63(1): 010506. doi: 10.7498/aps.63.010506
    [5] Wei Peng, Shen Yong-Jun, Yang Shao-Pu. Super-harmonic resonance of fractional-order van der Pol oscillator. Acta Physica Sinica, 2014, 63(1): 010503. doi: 10.7498/aps.63.010503
    [6] Li Xiao-Jing, Chen Xuan-Qing, Yan Jing. Hopf bifurcation and the problem of periodic solutions in a recharge-discharge oscillator model for El Niño and southern oscillation with time delay. Acta Physica Sinica, 2013, 62(16): 160202. doi: 10.7498/aps.62.160202
    [7] Lai Zhi-Hui, Leng Yong-Gang, Sun Jian-Qiao, Fan Sheng-Bo. Weak characteristic signal detection based on scale transformation of Duffing oscillator. Acta Physica Sinica, 2012, 61(5): 050503. doi: 10.7498/aps.61.050503
    [8] Zhang Yong. Analysis on positive effect of time-delay on a class of second-order oscillatory systems with unit negative feedback. Acta Physica Sinica, 2012, 61(23): 230202. doi: 10.7498/aps.61.230202
    [9] Xu Chang-Jin. Bifurcation analysis for a delayed sea-air oscillator coupling model for the ENSO. Acta Physica Sinica, 2012, 61(22): 220203. doi: 10.7498/aps.61.220203
    [10] Shen Yong-Jun, Yang Shao-Pu, Xing Hai-Jun. Dynamical analysis of linear single degree-of-freedom oscillator with fractional-order derivative. Acta Physica Sinica, 2012, 61(11): 110505. doi: 10.7498/aps.61.110505
    [11] Shen Yong-Jun, Yang Shao-Pu, Xing Hai-Jun. Dynamical analysis of linear SDOF oscillator with fractional-order derivative (Ⅱ). Acta Physica Sinica, 2012, 61(15): 150503. doi: 10.7498/aps.61.150503
    [12] Wu Yong-Feng, Zhang Shi-Ping, Sun Jin-Wei, Peter Rolfe, Li Zhi. Transient synchronization mutation of ring coupled Duffing oscillators driven by pulse signal. Acta Physica Sinica, 2011, 60(10): 100509. doi: 10.7498/aps.60.100509
    [13] Wu Yong-Feng, Zhang Shi-Ping, Sun Jin-Wei, Peter Rolfe. Abrupt change of synchronization of ring coupled Duffing oscillator. Acta Physica Sinica, 2011, 60(2): 020511. doi: 10.7498/aps.60.020511
    [14] Zhao Yan-Ying, Yang Ru-Ming. Using delayed feedback to control the band of saturation control in an auto-parametric dynamical system. Acta Physica Sinica, 2011, 60(10): 104304. doi: 10.7498/aps.60.104304.2
    [15] Shang Hui-Lin. Controlling fractal erosion of safe basins in a Helmholtz oscillator by delayed position feedback. Acta Physica Sinica, 2011, 60(7): 070501. doi: 10.7498/aps.60.070501
    [16] Rong Hai-Wu, Wang Xiang-Dong, Xu Wei, Fang Tong. Bifurcations of safe basins and chaos in softening Duffing oscillator under harmonic and bounded noise excitation. Acta Physica Sinica, 2007, 56(4): 2005-2011. doi: 10.7498/aps.56.2005
    [17] Mo Jia-Qi, Wang Hui, Lin Wan-Tao. A delayed sea-air oscillator coupling model for the ENSO. Acta Physica Sinica, 2006, 55(7): 3229-3232. doi: 10.7498/aps.55.3229
    [18] Rong Hai-Wu, Wang Xiang-Dong, Xu Wei, Meng Guang, Fang Tong. On double-peak probability density functions of a Duffing oscillator under narrow-band random excitations. Acta Physica Sinica, 2005, 54(6): 2557-2561. doi: 10.7498/aps.54.2557
    [19] Rong Hai-Wu, Wang Xiang-Dong, Xu Wei, Fang Tong. Bifurcation of safe basins in softening Duffing oscillator under bounded noise excitation. Acta Physica Sinica, 2005, 54(10): 4610-4613. doi: 10.7498/aps.54.4610
    [20] Zhang Qiang, Gao Lin, Wang Chao, Yuan Tao, Xu Jin. Study of the dynamics of a first-order cellular neural networks with delay. Acta Physica Sinica, 2003, 52(7): 1606-1610. doi: 10.7498/aps.52.1606
Metrics
  • Abstract views:  6567
  • PDF Downloads:  385
  • Cited By: 0
Publishing process
  • Received Date:  17 December 2015
  • Accepted Date:  08 January 2016
  • Published Online:  05 May 2016

/

返回文章
返回
Baidu
map