Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Stochastic resonance of a linear harmonic oscillator with non-linear damping fluctuation

Tian Yan He Gui-Tian Luo Mao-Kang

Citation:

Stochastic resonance of a linear harmonic oscillator with non-linear damping fluctuation

Tian Yan, He Gui-Tian, Luo Mao-Kang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Although non-linear noise exists far more widely in actual systems than linear noise, the study on non-linear noise is far from meeting the needs of practical situations as yet. The phenomenon of stochastic resonance (SR) is a non-linear cooperative effect which is jointly produced by signal, noise, and system, obviously, it is closely related to the nature of the noise. As a result, the non-linear nature of the non-linear noise has an inevitable impact on the dynamic behavior of a system, so it is of great significance to study the non-linear noise's influence on the dynamic behavior of the system. The linear harmonic oscillator is the most basic model to describe different phenomena in nature, and the quadratic noise is the most basic non-linear noise. In this paper, we consider a linear harmonic oscillator driven by an external periodic force and a quadratic damping fluctuation. For the proposed model, we focus on the effect of non-linear nature of quadratic fluctuation on the system's resonant behavior. Firstly, by the use of the Shapiro-Loginov formula and the Laplace transform technique, the analytical expressions of the first moment and the steady response amplitude of the output signal are obtained. Secondly, by studying the impacts of noise parameters and system intrinsic frequency, the non-monotonic behaviors of the steady response amplitude are found. Finally, numerical simulations are presented to verify the effectiveness of the analytical result. According to the research, we have the following conclusions: (1) The steady response amplitude is a non-monotonic function of coefficients of the quadratic damping fluctuation. Furthermore, the non-linear damping fluctuation is easier to contribute the system's enhancing response to the external periodic signal than the linear fluctuation. (2) The evolution of the steady response amplitude versus noise intensity presents more resonant behaviors. One-peak SR phenomenon and double-peak SR phenomenon are observed at different values of coefficients of the quadratic noise, particularly, the SR phenomenon disappears at the positive quadratic coefficient of the quadratic noise. (3) The evolution of the steady response amplitude versus the system intrinsic frequency presents true resonance, i. e. the phenomenon of resonance appears when the external signal frequency is equal to the system intrinsic frequency. True resonance is not observed in the linear harmonic oscillator driven by a linear damping fluctuation as yet. In conclusion, all the researches show that the non-linear nature of non-linear noise plays a key role in system's resonant behavior, in addition, the non-linear damping fluctuation is conductive to the detection and frequency estimation of weak periodic signal.
      Corresponding author: Luo Mao-Kang, makaluo@scu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11171238), the Scientific Research Foundation of the Education Department of Sichuan Province, China (Grant Nos. 14ZA0050, 13ZA0191), the Scientific Research Foundation of SWPU of China (Grant Nos. 2013XJZ027, 2013XJZ025, 2014 PYZ015), and the Young Scholars Development Fund of SWPU of China(Grant No. 201331010049).
    [1]

    Benzi R, Sutera A, Vulpiani A 1981 J. Phys. A: Math. Gen. 14 L453

    [2]

    Wiesenfeld K, Moss F 1995 Nature 373 33

    [3]

    Gitterman M 2005 Physica A 352 309

    [4]

    Benzi R 2010 Nonlinear Proc. Geophys. 17 431

    [5]

    Gammaitoni L, Hnggi P, Jung P, Marchesoni F 2009 Eur. Phys. J. B 69 1

    [6]

    McDonnell M D, Abbott D 2009 Plos Comput. Biol. 5 e1000348

    [7]

    Wellens T, Shatokhin V, Buchleitner A 2004 Rep. Prog. Phys. 67 45

    [8]

    Hnggi P, Jung P, Zerbe C, Moss F 1993 J. Stat. Phys. 70 25

    [9]

    Gammaitoni L, Hnggi P, Jung P, Marchesoni F 1998 Rev. Mod. Phys. 70 223

    [10]

    McNamara B, Wiesenfeld K 1989 Phys. Rev. A 39 4854

    [11]

    Fox R F 1989 Phys. Rev. A 39 4148

    [12]

    Fulinski A 1995 Phys. Rev. E 52 4523

    [13]

    Katrin L, Romi M, Astrid R 2009 Phys. Rev. E 79 051128

    [14]

    Berdichevsky V, Gitterman M 1996 Europhys. Lett. 36 161

    [15]

    Tian Y, Huang L, Luo M K 2013 Acta Phys. Sin. 62 050502 (in Chinese) [田艳, 黄丽, 罗懋康 2013 62 050502]

    [16]

    Lin L F, Tian Y, Ma H 2014 Chin. Phys. B 23 080503

    [17]

    Li D S, Li J H 2010 Commun. Theor. Phys. 53 298

    [18]

    Gitterman M, Shapiro I 2011 J. Stat. Phys. 144 139

    [19]

    Jiang S Q, Guo F, Zhou Y R, Gu T X 2007 International Conference on Communications, Circuits and Systems Fukuoka, Japan, July 11-13, 2007 p1044

    [20]

    Ning L J, Xu W, Yao M L 2007 Chin. Phys. 16 2595

    [21]

    Zhong S C, Yu T, Zhang L, Ma H 2015 Acta Phys. Sin. 64 020202 (in Chinese) [钟苏川, 蔚涛, 张路, 马洪 2015 64 020202]

    [22]

    Zhang L, Zhong S C, Peng H, Luo M K 2011 Chin. Phys. Lett. 28 090505

    [23]

    Gitterman M 2004 Phys. Rev. E 69 041101

    [24]

    Murray S I, Marlan O S, Willis E J 1974 Laser Physics (Rewood City: Addison-Wesley Publishing) p197

    [25]

    Zhang L Y, Cao L, Wu D J 2008 Commun. Theor. Phys. 49 1310

    [26]

    Sancho J M, San Miguel, Drr M D 1982 J. Stat. Phys. 28 291

    [27]

    Sagues F, Migurel S M, Sacho J M 1984 Z. Phys. B 55 269

    [28]

    Hector C, Fernando M, Enrique T 2006 Phys. Rev. E 74 022102

    [29]

    Zhang L, Zhong S C, Peng H, Luo M K 2012 Acta Phys. Sin. 61 130503 (in Chinese) [张路, 钟苏川, 彭皓, 罗懋康 2012 61 130503]

    [30]

    Bena I, Broeck C V D, Kawai R, Lindenberg K 2002 Phys. Rev. E 66 045603

    [31]

    Bena I 2006 Int. J. Mod. Phys. B 20 2825

  • [1]

    Benzi R, Sutera A, Vulpiani A 1981 J. Phys. A: Math. Gen. 14 L453

    [2]

    Wiesenfeld K, Moss F 1995 Nature 373 33

    [3]

    Gitterman M 2005 Physica A 352 309

    [4]

    Benzi R 2010 Nonlinear Proc. Geophys. 17 431

    [5]

    Gammaitoni L, Hnggi P, Jung P, Marchesoni F 2009 Eur. Phys. J. B 69 1

    [6]

    McDonnell M D, Abbott D 2009 Plos Comput. Biol. 5 e1000348

    [7]

    Wellens T, Shatokhin V, Buchleitner A 2004 Rep. Prog. Phys. 67 45

    [8]

    Hnggi P, Jung P, Zerbe C, Moss F 1993 J. Stat. Phys. 70 25

    [9]

    Gammaitoni L, Hnggi P, Jung P, Marchesoni F 1998 Rev. Mod. Phys. 70 223

    [10]

    McNamara B, Wiesenfeld K 1989 Phys. Rev. A 39 4854

    [11]

    Fox R F 1989 Phys. Rev. A 39 4148

    [12]

    Fulinski A 1995 Phys. Rev. E 52 4523

    [13]

    Katrin L, Romi M, Astrid R 2009 Phys. Rev. E 79 051128

    [14]

    Berdichevsky V, Gitterman M 1996 Europhys. Lett. 36 161

    [15]

    Tian Y, Huang L, Luo M K 2013 Acta Phys. Sin. 62 050502 (in Chinese) [田艳, 黄丽, 罗懋康 2013 62 050502]

    [16]

    Lin L F, Tian Y, Ma H 2014 Chin. Phys. B 23 080503

    [17]

    Li D S, Li J H 2010 Commun. Theor. Phys. 53 298

    [18]

    Gitterman M, Shapiro I 2011 J. Stat. Phys. 144 139

    [19]

    Jiang S Q, Guo F, Zhou Y R, Gu T X 2007 International Conference on Communications, Circuits and Systems Fukuoka, Japan, July 11-13, 2007 p1044

    [20]

    Ning L J, Xu W, Yao M L 2007 Chin. Phys. 16 2595

    [21]

    Zhong S C, Yu T, Zhang L, Ma H 2015 Acta Phys. Sin. 64 020202 (in Chinese) [钟苏川, 蔚涛, 张路, 马洪 2015 64 020202]

    [22]

    Zhang L, Zhong S C, Peng H, Luo M K 2011 Chin. Phys. Lett. 28 090505

    [23]

    Gitterman M 2004 Phys. Rev. E 69 041101

    [24]

    Murray S I, Marlan O S, Willis E J 1974 Laser Physics (Rewood City: Addison-Wesley Publishing) p197

    [25]

    Zhang L Y, Cao L, Wu D J 2008 Commun. Theor. Phys. 49 1310

    [26]

    Sancho J M, San Miguel, Drr M D 1982 J. Stat. Phys. 28 291

    [27]

    Sagues F, Migurel S M, Sacho J M 1984 Z. Phys. B 55 269

    [28]

    Hector C, Fernando M, Enrique T 2006 Phys. Rev. E 74 022102

    [29]

    Zhang L, Zhong S C, Peng H, Luo M K 2012 Acta Phys. Sin. 61 130503 (in Chinese) [张路, 钟苏川, 彭皓, 罗懋康 2012 61 130503]

    [30]

    Bena I, Broeck C V D, Kawai R, Lindenberg K 2002 Phys. Rev. E 66 045603

    [31]

    Bena I 2006 Int. J. Mod. Phys. B 20 2825

  • [1] Zhong Su-Chuan, Yu Tao, Zhang Lu, Ma Hong. Stochastic resonance of an underdamped linear harmonic oscillator with fluctuating mass and fluctuating frequency. Acta Physica Sinica, 2015, 64(2): 020202. doi: 10.7498/aps.64.020202
    [2] Jin Yan-Fei, Li Bei. Stochastic resonance in a piecewise nonlinear system driven by colored correlated additive and multiplicative colored noises. Acta Physica Sinica, 2014, 63(21): 210501. doi: 10.7498/aps.63.210501
    [3] Xie Wen-Xian, Li Dong-Ping, Xu Peng-Fei, Cai Li, Jin Yan-Fei. Stochastic resonance of a memorial-damped linear system with natural frequency fluctuation. Acta Physica Sinica, 2014, 63(10): 100502. doi: 10.7498/aps.63.100502
    [4] Yu Tao, Zhang Lu, Luo Mao-Kang. The resonant behavior of a linear harmonic oscillator with fluctuating mass. Acta Physica Sinica, 2013, 62(12): 120504. doi: 10.7498/aps.62.120504
    [5] Tian Xiang-You, Leng Yong-Gang, Fan Sheng-Bo. Parameter-adjusted stochastic resonance of first-order linear system. Acta Physica Sinica, 2013, 62(2): 020505. doi: 10.7498/aps.62.020505
    [6] Tian Yan, Huang Li, Luo Mao-Kang. Effects of time-periodic modulation of cross-correlation intensity between noises on stochastic resonance of over-damped linear system. Acta Physica Sinica, 2013, 62(5): 050502. doi: 10.7498/aps.62.050502
    [7] Wang Lin-Ze, Zhao Wen-Li, Chen Xuan. Theory and experiment research on a Piecewise-linear model based on stochastic resonance. Acta Physica Sinica, 2012, 61(16): 160501. doi: 10.7498/aps.61.160501
    [8] Zhang Liang-Ying, Jin Guo-Xiang, Cao Li. Stochastic resonance of linear harmonic oscillator subjected to simple harmonic force with frequency fluctuation. Acta Physica Sinica, 2012, 61(8): 080502. doi: 10.7498/aps.61.080502
    [9] Zhang Lu, Zhong Su-Chuan, Peng Hao, Luo Mao-Kang. Stochastic resonance in an over-damped linear oscillator driven by multiplicative quadratic noise. Acta Physica Sinica, 2012, 61(13): 130503. doi: 10.7498/aps.61.130503
    [10] Lu Zhi-Xin, Cao Li. Stochastic resonance of square wave signal in an overdamped harmonic oscillator. Acta Physica Sinica, 2011, 60(11): 110501. doi: 10.7498/aps.60.110501
    [11] Zhang Li, Liu Li, Cao Li. Stochastic resonance in an overdamped harmonic oscillator. Acta Physica Sinica, 2010, 59(3): 1494-1498. doi: 10.7498/aps.59.1494
    [12] Ning Li-Juan, Xu Wei. Stochastic resonance under modulated noise in linear systems driven by dichotomous noise. Acta Physica Sinica, 2009, 58(5): 2889-2894. doi: 10.7498/aps.58.2889
    [13] Jin Yan-Fei, Hu Hai-Yan. Stochastic resonance of a damped linear oscillator. Acta Physica Sinica, 2009, 58(5): 2895-2901. doi: 10.7498/aps.58.2895
    [14] Guo Li-Min, Xu Wei, Ruan Chun-Lei, Zhao Yan. Stochastic resonance for dichotomous noise in a second derivative linear system. Acta Physica Sinica, 2008, 57(12): 7482-7486. doi: 10.7498/aps.57.7482
    [15] Zhang Liang-Ying, Jin Guo-Xiang, Cao Li. Stochastic resonance of frequency modulated signals in a linear model of single-mode laser. Acta Physica Sinica, 2008, 57(8): 4706-4711. doi: 10.7498/aps.57.4706
    [16] Zhang Liang-Ying, Cao Li, Jin Guo-Xiang. Stochastic resonance of amplitude modulated wave in a linear model of single-mode laser. Acta Physica Sinica, 2006, 55(12): 6238-6242. doi: 10.7498/aps.55.6238
    [17] Zhang Guang-Jun, Xu Jian-Xue. Characteristic of nonlinear system stochastic resonance in the neighbourhood of bifurcation point. Acta Physica Sinica, 2005, 54(2): 557-564. doi: 10.7498/aps.54.557
    [18] Xu Wei, Jin Yan-Fei, Xu Meng, Li Wei. Stochastic resonance for bias-signal-modulated noise in a linear system. Acta Physica Sinica, 2005, 54(11): 5027-5033. doi: 10.7498/aps.54.5027
    [19] Jin Yan-Fei, Xu Wei, Li Wei, Xu Meng. Stochastic resonance for periodically modulated noise in a linear system. Acta Physica Sinica, 2005, 54(6): 2562-2567. doi: 10.7498/aps.54.2562
    [20] Kang Yan-Mei, Xu Jian-Xue, Xie Yong. Relaxation rate and stochastic resonance of a single-mode nonlinear optical syst em. Acta Physica Sinica, 2003, 52(11): 2712-2717. doi: 10.7498/aps.52.2712
Metrics
  • Abstract views:  6438
  • PDF Downloads:  291
  • Cited By: 0
Publishing process
  • Received Date:  04 November 2015
  • Accepted Date:  14 December 2015
  • Published Online:  05 March 2016

/

返回文章
返回
Baidu
map