Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ultrasound imaging algorithm based on generalized sidelobe canceller

Wang Ping Cheng Na Gong Zhi-Hui Wang Lin-Hong

Citation:

Ultrasound imaging algorithm based on generalized sidelobe canceller

Wang Ping, Cheng Na, Gong Zhi-Hui, Wang Lin-Hong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The traditional delay and sum (DAS) algorithm is the most widely adopted method in medical ultrasound imaging; although it can produce images quickly, it sacrifices the resolution and the contrast ratio. The adaptive method such as the minimum variance (MV) continuously updates the apodization weighting vectors according to the received signals, so that the variance of the weighted signals is minimized, and thus the quality of the ultrasound imaging can be improved, especially its resolution. Although the image quality may be improved in the contrast ratio as well as the resolution after combining the minimum variance with the coherence factor (MV-CF), it complicates the algorithm, and the robustness against noise is enhanced but a little. An improved ultrasound imaging algorithm based on the generalized side lobe canceller (GSC) is proposed, which is constructed according to the minimum variance principle. The canceller is designed to classify the signal into desired and noise signals, combined with wiping off the big interferential eigenvectors, so that the robustness against noise can be enhanced. Firstly, the canceller divides the weighting vector into non-adaptive and adaptive weights, then the eigenstructure subspace is established according to the covariance matrix of the received signals, and the renewed weighting vector is achieved finally by projecting the weighting vector into the left singular space of the eigenstructure subspace. Simulations of the point targets and the cyst phantom through the simulation tool Field II demonstrate that the ultrasound image acquired through the proposed method is better than the traditional DAS and MV-CF algorithms in terms of the contrast ratio and resolution. In practice, the contrast ratio increases by roughly 7 dB compared to DAS and 5 dB to MV-CF. Furthermore, the proposed method gives a more satisfactory lateral resolution as well as the lowest side lobe peak level. From the sound-absorbing speckle simulation, the contrast ratio increases by 3 dB more than that of DAS and over 4 dB than that of MV-CF when noise exists. In addition, MV-CF performs the worst in the robustness aspect while the proposed GSC method makes improvement on the basis of it. Besides, the image quality can be further improved by combining the proposed method with sign coherence factor (GSC-SCF). After such a combination, the noise added to the data sets is almost invisible in point targets simulation. It also possesses the maximum mean power in cyst region in sound-absorbing speckle simulation. Finally, an experiment is conducted on the basis of the complete data sets which are offered by the University of Michigan. Results indicate that the proposed methods can perform better than the conventional DAS and MV-CF in resolution, contrast ratio and the robustness against noise.
      Corresponding author: Cheng Na, cqu_dqwp@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51377182), and the Natural Science Foundation Project of CQ CSTC (Grant No. cstc2012jjA10129).
    [1]

    Cui W C, Tu J, Hwang J H, Li Q, Fan T B, Zhang D, Chen J H, Chen W Z 2012 Chin. Phys. B 21 074301

    [2]

    Zheng C C, Peng H, Han Z H 2014 Acta Phys. Sin. 63 148702 (in Chinese) [郑驰超, 彭虎, 韩志会 2014 63 148702]

    [3]

    Kortbek J, Jensen J A, Gammelmark K L 2013 Ultrasonics 53 1

    [4]

    Wu W T, Pu J, L Y 2011 Acta Acustica 36 66 (in Chinese) [吴文焘, 蒲杰, 吕燚 2011 声学学报 36 66]

    [5]

    Widrow B, Duvall K M, Gooch R P, Newman W C 1982 IEEE Trans. Antenn. Propag. 30 469

    [6]

    Sakhaei S M 2013 Ultrasonics 59 119

    [7]

    Wang P, Xu Q, Fan W Z, Gao Y, He W, Chen M Y 2013 Acta Acustica 38 65 (in Chinese) [王平, 许琴, 范文政, 高阳, 何为, 陈民铀 2013 声学学报 38 65]

    [8]

    Li J, Stoica P, Wang Z S 2004 IEEE Trans. Sign. Process. 52 2407

    [9]

    Selen Y, Abrahamsson R, Stoica P 2008 Signal Process. 88 33

    [10]

    Wang Y, Wu W F, Fan Z, Liang G L 2014 Acta Phys. Sin. 63 154303 (in Chinese) [王燕, 吴文峰, 范展, 梁国龙 2014 63 154303]

    [11]

    Zheng C C, Peng H, Han Z H 2012 Acta Acustica 37 637 (in Chinese) [郑驰超, 彭虎, 韩志会 2012 声学学报 37 637]

    [12]

    Li P C, Li M L 2003 IEEE Trans. Ultrason. Ferrolectr. and Frequency Control 50 128

    [13]

    Park S, Karpiouk A B, Aglyamov S R, Emelianov S Y 2008 Opt. Lett. 33 1291

    [14]

    Asl B M, Mahloojifar A 2009 IEEE Trans. Ultrason. Ferrolectr. and Frequency Control 56 1923

    [15]

    Aboulnasr H, Sherif A E, Alex B G, Kon M W 2006 IEEE Trans. Signal Process. 54 1587

    [16]

    Camacho J, Parrilla M, Fritsch C 2009 IEEE Trans. Ultrason. Ferroelectr. and Frequency Control 56 958

    [17]

    Jensen J A, Svendsen N B 1992 IEEE Trans. Ultrason. Ferrolectr. and Frequency Control 39 262

  • [1]

    Cui W C, Tu J, Hwang J H, Li Q, Fan T B, Zhang D, Chen J H, Chen W Z 2012 Chin. Phys. B 21 074301

    [2]

    Zheng C C, Peng H, Han Z H 2014 Acta Phys. Sin. 63 148702 (in Chinese) [郑驰超, 彭虎, 韩志会 2014 63 148702]

    [3]

    Kortbek J, Jensen J A, Gammelmark K L 2013 Ultrasonics 53 1

    [4]

    Wu W T, Pu J, L Y 2011 Acta Acustica 36 66 (in Chinese) [吴文焘, 蒲杰, 吕燚 2011 声学学报 36 66]

    [5]

    Widrow B, Duvall K M, Gooch R P, Newman W C 1982 IEEE Trans. Antenn. Propag. 30 469

    [6]

    Sakhaei S M 2013 Ultrasonics 59 119

    [7]

    Wang P, Xu Q, Fan W Z, Gao Y, He W, Chen M Y 2013 Acta Acustica 38 65 (in Chinese) [王平, 许琴, 范文政, 高阳, 何为, 陈民铀 2013 声学学报 38 65]

    [8]

    Li J, Stoica P, Wang Z S 2004 IEEE Trans. Sign. Process. 52 2407

    [9]

    Selen Y, Abrahamsson R, Stoica P 2008 Signal Process. 88 33

    [10]

    Wang Y, Wu W F, Fan Z, Liang G L 2014 Acta Phys. Sin. 63 154303 (in Chinese) [王燕, 吴文峰, 范展, 梁国龙 2014 63 154303]

    [11]

    Zheng C C, Peng H, Han Z H 2012 Acta Acustica 37 637 (in Chinese) [郑驰超, 彭虎, 韩志会 2012 声学学报 37 637]

    [12]

    Li P C, Li M L 2003 IEEE Trans. Ultrason. Ferrolectr. and Frequency Control 50 128

    [13]

    Park S, Karpiouk A B, Aglyamov S R, Emelianov S Y 2008 Opt. Lett. 33 1291

    [14]

    Asl B M, Mahloojifar A 2009 IEEE Trans. Ultrason. Ferrolectr. and Frequency Control 56 1923

    [15]

    Aboulnasr H, Sherif A E, Alex B G, Kon M W 2006 IEEE Trans. Signal Process. 54 1587

    [16]

    Camacho J, Parrilla M, Fritsch C 2009 IEEE Trans. Ultrason. Ferroelectr. and Frequency Control 56 958

    [17]

    Jensen J A, Svendsen N B 1992 IEEE Trans. Ultrason. Ferrolectr. and Frequency Control 39 262

  • [1] Li Bao-Min, Hu Ming-Liang, Fan Heng. Quantum coherence. Acta Physica Sinica, 2019, 68(3): 030304. doi: 10.7498/aps.68.20181779
    [2] Qian Zu-Wen. Viscosity coefficient in granular medium. Acta Physica Sinica, 2012, 61(13): 134301. doi: 10.7498/aps.61.134301
    [3] Guo Mei-Yu, Gao Jie. Differential invariants and group classification of variable coefficient generalized Gardner equation. Acta Physica Sinica, 2009, 58(10): 6686-6691. doi: 10.7498/aps.58.6686
    [4] Cheng Ke, Lü Bai-Da. Complete destructive interference of four partially coherent point sources. Acta Physica Sinica, 2009, 58(1): 250-257. doi: 10.7498/aps.58.250
    [5] Wang Jian-Ming, Duan Kai-Liang, Wang Yi-Shan. Experimental study of coherent beam combining of two fiber lasers. Acta Physica Sinica, 2008, 57(9): 5627-5631. doi: 10.7498/aps.57.5627
    [6] Chen Zi-Lun, Zhou Pu, Xu Xiao-Jun, Hou Jing, Jiang Zong-Fu. The influence of spectral lines and coupling coefficient on mutual injection locking of fiber lasers. Acta Physica Sinica, 2008, 57(6): 3588-3592. doi: 10.7498/aps.57.3588
    [7] Ren Min, Ma Ai-Qun, Muhammad Ashfaq Ahmad, Zeng Ran, Liu Shu-Tian, Ma Zhi-Min. The quantum statistical properties of a class of superposed q-deformed generalized coherent states. Acta Physica Sinica, 2007, 56(2): 845-853. doi: 10.7498/aps.56.845
    [8] Mao Jie-Jian, Yang Jian-Rong. New solitary-wave-like solutions and exact solutions to variable coefficient generalized KdV equation. Acta Physica Sinica, 2007, 56(9): 5049-5053. doi: 10.7498/aps.56.5049
    [9] Sun Yi-Ling, Pan Jian-Xia. Analysis of the fully destructive interference of overlapping-images in MMI couplers. Acta Physica Sinica, 2007, 56(6): 3300-3305. doi: 10.7498/aps.56.3300
    [10] Li De-Sheng, Zhang Hong-Qing. Improved tanh-function method and the new exact solutions for the general variab le coefficient KdV equation and MKdV equation. Acta Physica Sinica, 2003, 52(7): 1569-1573. doi: 10.7498/aps.52.1569
    [11] ZHANG JIE-FANG, CHEN FANG-YUE. TRUNCATED EXPANSION METHOD AND NEW EXACT SOLITON-LIKE SOLUTION OF THE GENERAL VARIABLE COEFFICIENT KdV EQUATION. Acta Physica Sinica, 2001, 50(9): 1648-1650. doi: 10.7498/aps.50.1648
    [12] HUANG WEI, E.R.PIKE. PHOTON CORRELATION SPECTROSCOPY USING SINGLE-MODE OPTICAL FIBERS. Acta Physica Sinica, 2001, 50(8): 1507-1511. doi: 10.7498/aps.50.1507
    [13] NI ZHI-XIANG. SUPERPOSITION OF GENERALIZED COHERENT STATES IN THE NON HARMONIC OSCILLATOR POTENTIAL. Acta Physica Sinica, 1997, 46(9): 1687-1692. doi: 10.7498/aps.46.1687
    [14] XU ZI-WEN. EVEN AND ODD GENERALIZED COHERENT STATES IN THE NON HARMONIC OSCILLATOR POTENTIAL. Acta Physica Sinica, 1996, 45(11): 1807-1811. doi: 10.7498/aps.45.1807
    [15] ZHANG XI-QING, ZHAO JIA-LONG, QIN WEI-PING, DOU KAI, HUANG SHI-HUA. MEASUREMENT OF THE AMBIPOLAR DIFFUSION COEFFICIENT USING TIME-DELAYED FOUR-WAVE MIXING WITH INCOHERENT LIGHT. Acta Physica Sinica, 1993, 42(3): 417-421. doi: 10.7498/aps.42.417
    [16] WENG ZHENG-YU, WU HANG-SHENG. NOTE ON THE KUBO FORMULA OF THE LINEAR TRANSPORT COEFFICIENT. Acta Physica Sinica, 1984, 33(4): 575-578. doi: 10.7498/aps.33.575
    [17] CHEN JIAN-WEN, FU SHU-FEN. ELECTRON ENERGY DISTRIBUTION AND TRANSPORT COEFFICIENTS IN ELECTRICALLY EXCITED KrF AND ArF. Acta Physica Sinica, 1981, 30(9): 1165-1173. doi: 10.7498/aps.30.1165
    [18] ZHAN DA-SAN. A DISCUSSION ON THE GENERALIZED LINEAR COHERENT OPTICAL-PROCESSING SYSTEM. Acta Physica Sinica, 1979, 28(3): 358-363. doi: 10.7498/aps.28.358
    [19] Tcheng Da-Tchang, Yang Jeng-Tsong. ON THE ABSORPTION COEFFICIENTS OF β- RAYS. Acta Physica Sinica, 1947, 7(1): 29-47. doi: 10.7498/aps.7.29
    [20] . Acta Physica Sinica, 1936, 2(1): 38-42. doi: 10.7498/aps.2.38
Metrics
  • Abstract views:  6681
  • PDF Downloads:  183
  • Cited By: 0
Publishing process
  • Received Date:  21 April 2015
  • Accepted Date:  01 August 2015
  • Published Online:  05 December 2015

/

返回文章
返回
Baidu
map