-
This paper discusses the spontaneous emission field of a two-level atom near a μ-negative metamaterial(MNG) slab, in which the surface modes are excited. the μ-negative metamaterial is a kind of artificial-microstructured materials possessing effective negative permeability and positive permittivity. According to Maxwell's equations and boundary conditions, the MNG slab supports only TE-polarized surface modes.We analyze the properties of the surface mode, i.e.the number of the surface mode and its symmetry or antisymmetry profiles, supported by the MNG slab with different permeability and thickness, and then study the influence of these characteristics on the spatial distribution of the spontaneous emission field in detail. Results show that the distance between the atom and the slab can affect the ratio of surface mode to the total atomic emission field. When the surface mode plays the dominate role, the spontaneous emission field of the atom on the nearest surface of MNG slab are directionally propagating along y-axis if the atomic dipole is along x-axis due to the TE-polarized surface mode. The atomic emission field on the other surface depends on the symmetry of the surface modes and their percentage. If the symmetric and antisymmetric surface modes coexist, the field intensity on the right surface is weakened or even disappears completely, but if there exists only symmetric or antisymmetric surface mode, the field intensity on the right surface is nearly identical with that on the left surface. These phenomena are significantly different from the case of atoms near a metal slab or a dielectric slab. Our results are useful for the controllable atomic emission and have potential application to the single-photon source.
-
Keywords:
- μ-negative metamaterials /
- surface mode /
- spontaneous emission
[1] Veselago V G 1968 Soviet Physics Usp. 10 509
[2] Sun Y Z, Ran L X, Wang D X, Wang W G, Chen Q L 2010 Acta Phys. Sin. 59 4602 (in Chinese) [孙永志, 冉立新, 王东兴, 王伟光, 陈秋林 2010 59 4602]
[3] Pendry J B, Holden A J, Stewart W J, Youngs I 1996 Phys. Rev. Lett. 76 4773
[4] Alù, Engheta N 2003 IEEE Trans. Antennas Propagat. 51 2558
[5] Zhang L W, Wang Y Z, He L, Xu J P 2010 Acta Phys. Sin. 59 6106 (in Chinese) [张利伟, 王佑贞, 赫丽, 许静平 2010 59 6106]
[6] Zang Y Z, He M X, Gu J Q, Tian Z, Han J G 2012 Chin. Phys. B 21 117802
[7] Xu H X, Wang G M, Wang J F, Yang Z M 2012 Chin. Phys. B 21 124101
[8] Pendry J B, Holden A J, Robbins D J, Stewart W J 1999 IEEE Trans. Microwave Theory Tech. 47 2075
[9] Marqués R, Medina F, Rafii-EI-Idrissi R 2002 Phys. Rev. B 65 144440
[10] Huang K C, Povinelli M L, Joannopoulos J D 2004 Appl. Phys. Lett. 85 543
[11] Moser H O, Casse B D F, Wilhelmi O, Saw B T 2005 Phys. Rev. Lett. 94 063901
[12] Zhang S, Fan W J, Minhas B K, Frauenglass A, Malloy K J, Brueck S R J 2005 Phys. Rev. Lett. 94 037402
[13] Liu D M, Han P 2010 Acta Phys. Sin. 59 7066 (in Chinese) [刘冬梅, 韩鹏 2010 59 7066]
[14] He Q, Sun S L, Xiao S Y, Li X, Song Z Y, Sun W J, Zhou L 2014 Chin. Phys. B 23 047808
[15] Zhang L W, Zhao Y H, Wang Q, Fang K, Li W B, Qiao W T 2012 Acta Phys. Sin. 61 068401 (in Chinese) [张利伟, 赵玉环, 王勤, 方恺, 李卫彬, 乔文涛 2012 61 068401]
[16] Ruppin R 2000 Phys. Lett. A 277 61
[17] Ruppin R 2001 J. Phys. Condens. Matter 13 1811
[18] Chang D E, Sorensen A S, Hemmer P R, Lukin M D 2006 Phys. Rev. Lett. 97 053002
[19] Ritchie R H 1957 Phys. Rev. 106 874
[20] Xu J P, Al-Amri M, Yang Y P, Zhu S Y, Zubairy M S 2011 Phys. Rev. A 84 032334
[21] Xu J P, Yang Y P, Lin Q, Zhu S Y 2009 Phys. Rev. A 79 043812
[22] Xu J P, Yang Y P, Zhu S Y 2010 J. Mod. Opt 57 1473
[23] Ringler M, Schwemer A, Wunderlich M, Nichtl A, Kurzinger K, Klar T A, Feldmann J 2008 Phys. Rev. Lett. 100 203002
[24] Dung H T, Buhmann S Y, Knöll L, Welsch D G, Schell S, Kastel J 2003 Phys. Rev. A 68 043816
[25] Otto A 1968 Z. Phys. 216 398
-
[1] Veselago V G 1968 Soviet Physics Usp. 10 509
[2] Sun Y Z, Ran L X, Wang D X, Wang W G, Chen Q L 2010 Acta Phys. Sin. 59 4602 (in Chinese) [孙永志, 冉立新, 王东兴, 王伟光, 陈秋林 2010 59 4602]
[3] Pendry J B, Holden A J, Stewart W J, Youngs I 1996 Phys. Rev. Lett. 76 4773
[4] Alù, Engheta N 2003 IEEE Trans. Antennas Propagat. 51 2558
[5] Zhang L W, Wang Y Z, He L, Xu J P 2010 Acta Phys. Sin. 59 6106 (in Chinese) [张利伟, 王佑贞, 赫丽, 许静平 2010 59 6106]
[6] Zang Y Z, He M X, Gu J Q, Tian Z, Han J G 2012 Chin. Phys. B 21 117802
[7] Xu H X, Wang G M, Wang J F, Yang Z M 2012 Chin. Phys. B 21 124101
[8] Pendry J B, Holden A J, Robbins D J, Stewart W J 1999 IEEE Trans. Microwave Theory Tech. 47 2075
[9] Marqués R, Medina F, Rafii-EI-Idrissi R 2002 Phys. Rev. B 65 144440
[10] Huang K C, Povinelli M L, Joannopoulos J D 2004 Appl. Phys. Lett. 85 543
[11] Moser H O, Casse B D F, Wilhelmi O, Saw B T 2005 Phys. Rev. Lett. 94 063901
[12] Zhang S, Fan W J, Minhas B K, Frauenglass A, Malloy K J, Brueck S R J 2005 Phys. Rev. Lett. 94 037402
[13] Liu D M, Han P 2010 Acta Phys. Sin. 59 7066 (in Chinese) [刘冬梅, 韩鹏 2010 59 7066]
[14] He Q, Sun S L, Xiao S Y, Li X, Song Z Y, Sun W J, Zhou L 2014 Chin. Phys. B 23 047808
[15] Zhang L W, Zhao Y H, Wang Q, Fang K, Li W B, Qiao W T 2012 Acta Phys. Sin. 61 068401 (in Chinese) [张利伟, 赵玉环, 王勤, 方恺, 李卫彬, 乔文涛 2012 61 068401]
[16] Ruppin R 2000 Phys. Lett. A 277 61
[17] Ruppin R 2001 J. Phys. Condens. Matter 13 1811
[18] Chang D E, Sorensen A S, Hemmer P R, Lukin M D 2006 Phys. Rev. Lett. 97 053002
[19] Ritchie R H 1957 Phys. Rev. 106 874
[20] Xu J P, Al-Amri M, Yang Y P, Zhu S Y, Zubairy M S 2011 Phys. Rev. A 84 032334
[21] Xu J P, Yang Y P, Lin Q, Zhu S Y 2009 Phys. Rev. A 79 043812
[22] Xu J P, Yang Y P, Zhu S Y 2010 J. Mod. Opt 57 1473
[23] Ringler M, Schwemer A, Wunderlich M, Nichtl A, Kurzinger K, Klar T A, Feldmann J 2008 Phys. Rev. Lett. 100 203002
[24] Dung H T, Buhmann S Y, Knöll L, Welsch D G, Schell S, Kastel J 2003 Phys. Rev. A 68 043816
[25] Otto A 1968 Z. Phys. 216 398
Catalog
Metrics
- Abstract views: 5972
- PDF Downloads: 300
- Cited By: 0