-
To obtain compound attractors between different chaotic systems, based on theoretical analysis, numerical simulation, and circuit simulation methods, compound attractors between different 2-scroll systems, between different multi-scroll chaotic systems, between 2-scroll system and 2-wing system and between multi-scroll system and multi-wing system, are designed via switching control. Dynamical characteristics of the system are analyzed by observing the attractor phase diagram, the largest Lyapunov exponent and the Poincaré section. A circuit for a compound multiple scroll-multiple wing chaotic attractor is designed and simulated. Numerical simulation and circuit simulation are consistent with each other. It shows that the method of obtaining compound attractors between different chaotic systems via switching control is correct.
-
Keywords:
- multi-scroll attractor /
- multi-wing attractor /
- switching control /
- circuit design
[1] Lorenz E N 1963 J. Atmos. Sci. 20 130
[2] Yu S M, L J H 2012 Circuits Syst. 59 1015
[3] Kais B, Abdessattar C, Ahmed T 2011 Chaos Solitions Fract. 44 79
[4] L J H, Yu X H, Chen G R 2003 Circuits Syst. 50 198
[5] Zhou X, Wang C H, Guo X R 2012 Acta Phys. Sin. 61 200506 (in Chinese) [周欣, 王春华, 郭小蓉 2012 61 200506]
[6] Yu S M 2005 Acta Phys. Sin. 54 1500 (in Chinese) [禹思敏 2005 54 1500]
[7] Liu M H, Yu S M 2006 Acta Phys. Sin. 55 5707 (in Chinese) [刘明华, 禹思敏 2006 55 5707]
[8] Zhang C X, Yu S M 2009 Acta Phys. Sin. 58 120 (in Chinese) [张朝霞, 禹思敏 2009 58 120]
[9] Wang F Q, Liu C X 2007 Acta Phys. Sin. 56 1983 (in Chinese) [王发强, 刘崇新 2007 56 1983]
[10] Chen L, Peng H J, Wang D S 2008 Acta Phy. Sin. 57 3337 (in Chinese) [谌龙, 彭海军, 王德石 2008 57 3337]
[11] Bao B C, Xu Q, Xu Y M, Wang X F 2011 J. Circuits Syst. 16 69 (in Chinese) [包伯成, 徐强, 徐煜明, 汪小锋 2011 电路与系统学报 16 69]
[12] Mustafa T, Hidayet O 2010 Expert Syst. Appl. 37 8667
[13] Yu S M, L J H, Chen G R 2007 Phys. Lett. A 364 244
[14] Sanchez-Lopez C 2011 Appl. Math. Comput. 217 4350
[15] Xu F, Yu P 2010 J. Math. Anal. Appl. 362 252
[16] Li G L, Chen X Y 2009 Commun. Nonlinear Sci. Numer. Simulat. 14 194
[17] Liu C X, Yi J, Xi X C, An L M, Qian Y, Fu Y Q 2012 Proc. Eng. 29 957
[18] Zhang C X, Yu S M 2012 Int. J. Bifurcat. Chaos 22 1250120
-
[1] Lorenz E N 1963 J. Atmos. Sci. 20 130
[2] Yu S M, L J H 2012 Circuits Syst. 59 1015
[3] Kais B, Abdessattar C, Ahmed T 2011 Chaos Solitions Fract. 44 79
[4] L J H, Yu X H, Chen G R 2003 Circuits Syst. 50 198
[5] Zhou X, Wang C H, Guo X R 2012 Acta Phys. Sin. 61 200506 (in Chinese) [周欣, 王春华, 郭小蓉 2012 61 200506]
[6] Yu S M 2005 Acta Phys. Sin. 54 1500 (in Chinese) [禹思敏 2005 54 1500]
[7] Liu M H, Yu S M 2006 Acta Phys. Sin. 55 5707 (in Chinese) [刘明华, 禹思敏 2006 55 5707]
[8] Zhang C X, Yu S M 2009 Acta Phys. Sin. 58 120 (in Chinese) [张朝霞, 禹思敏 2009 58 120]
[9] Wang F Q, Liu C X 2007 Acta Phys. Sin. 56 1983 (in Chinese) [王发强, 刘崇新 2007 56 1983]
[10] Chen L, Peng H J, Wang D S 2008 Acta Phy. Sin. 57 3337 (in Chinese) [谌龙, 彭海军, 王德石 2008 57 3337]
[11] Bao B C, Xu Q, Xu Y M, Wang X F 2011 J. Circuits Syst. 16 69 (in Chinese) [包伯成, 徐强, 徐煜明, 汪小锋 2011 电路与系统学报 16 69]
[12] Mustafa T, Hidayet O 2010 Expert Syst. Appl. 37 8667
[13] Yu S M, L J H, Chen G R 2007 Phys. Lett. A 364 244
[14] Sanchez-Lopez C 2011 Appl. Math. Comput. 217 4350
[15] Xu F, Yu P 2010 J. Math. Anal. Appl. 362 252
[16] Li G L, Chen X Y 2009 Commun. Nonlinear Sci. Numer. Simulat. 14 194
[17] Liu C X, Yi J, Xi X C, An L M, Qian Y, Fu Y Q 2012 Proc. Eng. 29 957
[18] Zhang C X, Yu S M 2012 Int. J. Bifurcat. Chaos 22 1250120
Catalog
Metrics
- Abstract views: 7069
- PDF Downloads: 898
- Cited By: 0